Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (19) Attributions Wiki
XB-STAGE-118

Papers associated with mature egg stage

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Spindle function in Xenopus oocytes involves possible nanodomain calcium signaling., Li R, Leblanc J, He K, Liu XJ., Mol Biol Cell. November 1, 2016; 27 (21): 3273-3283.              


Maternal PCBP1 determines the normal timing of pronucleus formation in mouse eggs., Shi Z, Zhao C, Yang Y, Teng H, Guo Y, Ma M, Guo X, Zhou Z, Huo R, Zhou Q., Cell Mol Life Sci. September 1, 2015; 72 (18): 3575-86.


Cortical rotation and messenger RNA localization in Xenopus axis formation., Houston DW., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (3): 371-88.        


Polar body emission requires a RhoA contractile ring and Cdc42-mediated membrane protrusion., Zhang X, Ma C, Miller AL, Katbi HA, Bement WM, Liu XJ., Dev Cell. September 1, 2008; 15 (3): 386-400.


Cdc42 activation couples spindle positioning to first polar body formation in oocyte maturation., Ma C, Benink HA, Cheng D, Montplaisir V, Wang L, Xi Y, Zheng PP, Bement WM, Liu XJ., Curr Biol. January 24, 2006; 16 (2): 214-20.


Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs., Clarke EJ, Allan VJ., Cell Motil Cytoskeleton. September 1, 2003; 56 (1): 13-26.


Comparative aspects of animal oogenesis., Matova N, Cooley L., Dev Biol. March 15, 2001; 231 (2): 291-320.  


Simulation of the fertilization Ca2+ wave in Xenopus laevis eggs., Wagner J, Li YX, Pearson J, Keizer J., Biophys J. October 1, 1998; 75 (4): 2088-97.


The ion selectivity of a membrane conductance inactivated by extracellular calcium in Xenopus oocytes., Zhang Y, McBride DW, Hamill OP., J Physiol. May 1, 1998; 508 ( Pt 3) 763-76.


Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of Xenopus laevis., Kume S, Yamamoto A, Inoue T, Muto A, Okano H, Mikoshiba K., Dev Biol. February 15, 1997; 182 (2): 228-39.              


[The morphological criteria and proposed mechanisms of cortical contractility in oocytes of the clawed toad]., Riabova LV, Vasetskiĭ SG., Ontogenez. January 1, 1996; 27 (3): 165-72.


Stathmin gene family: phylogenetic conservation and developmental regulation in Xenopus., Maucuer A, Moreau J, Méchali M, Sobel A., J Biol Chem. August 5, 1993; 268 (22): 16420-9.


Phosphorylation of conserved serine residues does not regulate the ability of mosxe protein kinase to induce oocyte maturation or function as cytostatic factor., Freeman RS, Meyer AN, Li J, Donoghue DJ., J Cell Biol. February 1, 1992; 116 (3): 725-35.


Spatial reorganization of actin, tubulin and histone mRNAs during meiotic maturation and fertilization in Xenopus oocytes., Perry BA, Capco DG., Cell Differ Dev. November 1, 1988; 25 (2): 99-108.


Freeze-fracture analysis of structural reorganization during meiotic maturation in oocytes of Xenopus laevis., Larabell CA, Chandler DE., Cell Tissue Res. January 1, 1988; 251 (1): 129-36.


Soluble cytokeratins in Xenopus laevis oocytes and eggs., Gall L, Karsenti E., Biol Cell. January 1, 1987; 61 (1-2): 33-8.


Molecular structure of maternal RNA., Thomas TL, Posakony JW, Anderson DM, Britten RJ, Davidson EH., Chromosoma. January 1, 1981; 84 (3): 319-35.


The cyclic behavior of a cytoplasmic factor controlling nuclear membrane breakdown., Wasserman WJ, Smith LD., J Cell Biol. July 1, 1978; 78 (1): R15-22.


[The ultrastructure of the peripheral cytoplasm of the ovarian oocytes and the mature egg of Xenopus laevis (Amphibia anura)]., Van Gansen P., J Embryol Exp Morphol. June 1, 1966; 15 (3): 355-64.

???pagination.result.page??? 1