Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (984) Expression Attributions Wiki
XB-ANAT-1564

Papers associated with hypothalamus (and crh)

Limit to papers also referencing gene:
Show all hypothalamus papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

cyp21a2 Knockout Tadpoles Survive Metamorphosis Despite Low Corticosterone., Paul B., Endocrinology. November 14, 2022; 164 (1):               


Digital dissection of the model organism Xenopus laevis using contrast-enhanced computed tomography., Porro LB., J Anat. August 1, 2017; 231 (2): 169-191.                        


An intrinsic CRF signaling system within the optic tectum., Carr JA., Gen Comp Endocrinol. July 1, 2013; 188 204-11.  


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


The organization of CRF neuronal pathways in toads: Evidence that retinal afferents do not contribute significantly to tectal CRF content., Carr JA., Brain Behav Evol. January 1, 2010; 76 (1): 71-86.


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Evolutionarily conserved glucocorticoid regulation of corticotropin-releasing factor expression., Yao M., Endocrinology. May 1, 2008; 149 (5): 2352-60.


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Structural and functional conservation of vertebrate corticotropin-releasing factor genes: evidence for a critical role for a conserved cyclic AMP response element., Yao M., Endocrinology. May 1, 2007; 148 (5): 2518-31.


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Distribution and acute stressor-induced activation of corticotrophin-releasing hormone neurones in the central nervous system of Xenopus laevis., Yao M., J Neuroendocrinol. November 1, 2004; 16 (11): 880-93.


Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis., Boorse GC., Gen Comp Endocrinol. July 1, 2004; 137 (3): 272-82.


Roles of corticotropin-releasing factor, neuropeptide Y and corticosterone in the regulation of food intake in Xenopus laevis., Crespi EJ., J Neuroendocrinol. March 1, 2004; 16 (3): 279-88.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Immunocytochemical analysis of proenkephalin-derived peptides in the amphibian hypothalamus and optic tectum., Merchenthaler I., Dev Biol. July 28, 1987; 416 (2): 219-27.    


Immunocytochemical localization and spatial relation to the adenohypophysis of a somatostatin-like and a corticotropin-releasing factor-like peptide in the brain of four amphibian species., Olivereau M., Cell Tissue Res. February 1, 1987; 247 (2): 317-24.

???pagination.result.page??? 1