Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4753) Expression Attributions Wiki
XB-ANAT-140

Papers associated with genital system

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Early cellular interactions promote embryonic axis formation in Xenopus laevis., Gimlich RL., Dev Biol. July 1, 1984; 104 (1): 117-30.


Role of soluble myosin in cortical contractions of Xenopus eggs., Christensen K., Nature. July 12, 1984; 310 (5973): 150-1.


Amino acid sequence of phosvitin derived from the nucleotide sequence of part of the chicken vitellogenin gene., Byrne BM., Biochemistry. September 11, 1984; 23 (19): 4275-9.


Altered levels of a 5 S gene-specific transcription factor (TFIIIA) during oogenesis and embryonic development of Xenopus laevis., Shastry BS., J Biol Chem. September 25, 1984; 259 (18): 11373-82.


Diploid gynogenesis in Xenopus laevis and the localization with respect to the centromere of the gene for periodic albinism ap., Thiébaud CH., J Embryol Exp Morphol. October 1, 1984; 83 33-42.


Culture shock. Synthesis of heat-shock-like proteins in fresh primary cell cultures., Wolffe AP., Exp Cell Res. October 1, 1984; 154 (2): 581-90.


Fertilization of investment-free Xenopus eggs., Stewart-Savage J., Exp Cell Res. October 1, 1984; 154 (2): 639-42.


Fidelity of transcription of Xenopus laevis globin genes injected into Xenopus laevis oocytes and unfertilized eggs., Bendig MM., Mol Cell Biol. October 1, 1984; 4 (10): 2109-19.


Oocytes and early embryos of Xenopus laevis contain intermediate filaments which react with anti-mammalian vimentin antibodies., Godsave SF., J Embryol Exp Morphol. October 1, 1984; 83 169-87.


Intermediate filaments in the Xenopus oocyte: the appearance and distribution of cytokeratin-containing filaments., Godsave SF., J Embryol Exp Morphol. October 1, 1984; 83 157-67.          


The distribution of microsomal glutathione transferase among different organelles, different organs, and different organisms., Morgenstern R., Biochem Pharmacol. November 15, 1984; 33 (22): 3609-14.


Localization and induction in early development of Xenopus., Gerhart JC., Philos Trans R Soc Lond B Biol Sci. December 4, 1984; 307 (1132): 319-30.


Sex- and tissue-specific, but hormonally independent, demethylation at the 3'-end of Xenopus vitellogenin gene B1., Ng WC., FEBS Lett. December 10, 1984; 178 (2): 217-22.


Ionic control of locomotion and shape of epithelial cells: I. Role of calcium influx., Mittal AK., Cell Motil. January 1, 1985; 5 (2): 123-36.


Chromosome replication in early Xenopus embryos., Laskey RA., Cold Spring Harb Symp Quant Biol. January 1, 1985; 50 657-63.


All components required for the eventual activation of muscle-specific actin genes are localized in the subequatorial region of an uncleaved amphibian egg., Gurdon JB., Proc Natl Acad Sci U S A. January 1, 1985; 82 (1): 139-43.


Constancy of DNA organization of polymorphic and nonpolymorphic genes during development in Xenopus., Okada A., Differentiation. January 1, 1985; 29 (1): 14-9.


A comparative study of the membrane potential from before fertilization through early cleavage in two frogs, Rana pipiens and Xenopus laevis., Webb DJ., Comp Biochem Physiol A Comp Physiol. January 1, 1985; 82 (1): 35-42.


In vitro translation of messenger RNA in a rabbit reticulocyte lysate cell-free system., Oliver CL., Methods Mol Biol. January 1, 1985; 2 145-55.


Localization of the factors producing the periodic activities responsible for synchronous cleavage in Xenopus embryos., Shinagawa A., J Embryol Exp Morphol. February 1, 1985; 85 33-46.


Fertilization potential and electrical properties of the Xenopus laevis egg., Webb DJ., Dev Biol. February 1, 1985; 107 (2): 395-406.


Influence of the polyamine spermine on the organization of cortical filaments in isolated cortices of Xenopus laevis eggs., Grant NJ., Eur J Cell Biol. March 1, 1985; 36 (2): 239-46.


Occurrence of a species-specific nuclear antigen in the germ line of Xenopus and its expression from paternal genes in hybrid frogs., Wedlich D., Dev Biol. March 1, 1985; 108 (1): 220-34.                


Transformed Xenopus embryos as a transient expression system to analyze gene expression at the midblastula transition., Etkin LD., Dev Biol. March 1, 1985; 108 (1): 173-8.


Experimental control of the site of embryonic axis formation in Xenopus laevis eggs centrifuged before first cleavage., Black SD., Dev Biol. April 1, 1985; 108 (2): 310-24.


On the diversity of sperm histones in the vertebrates: IV. Cytochemical and amino acid analysis in Anura., Kasinsky HE., J Exp Zool. April 1, 1985; 234 (1): 33-46.


An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis., Busa WB., J Cell Biol. April 1, 1985; 100 (4): 1325-9.


In vitro activation of human sperm induced by amphibian egg extract., Gordon K., Exp Cell Res. April 1, 1985; 157 (2): 409-18.


Changes in the nuclear lamina composition during early development of Xenopus laevis., Stick R., Cell. May 1, 1985; 41 (1): 191-200.                


Changes in levels of polymeric tubulin associated with activation and dorsoventral polarization of the frog egg., Elinson RP., Dev Biol. May 1, 1985; 109 (1): 224-33.


Immunological identification of the karyophilic, histone-binding proteins N1 and N2 in somatic cells and oocytes of diverse amphibia., Krohne G., Exp Cell Res. May 1, 1985; 158 (1): 205-22.


Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis., Benavente R., Cell. May 1, 1985; 41 (1): 177-90.                      


Fine structure of oviducal epithelium of Xenopus laevis in relation to its role in secreting egg envelopes., Yoshizaki N., J Morphol. May 1, 1985; 184 (2): 155-169.


Spatial changes in poly(A) concentrations during early embryogenesis in Xenopus laevis: analysis by in situ hybridization., Phillips CR., Dev Biol. June 1, 1985; 109 (2): 299-310.


Regulation of amphibian oocyte maturation., Maller JL., Cell Differ. June 1, 1985; 16 (4): 211-21.


Heterogeneity of high-mobility-group protein 2. Enrichment of a rapidly migrating form in testis., Bucci LR., Biochem J. July 1, 1985; 229 (1): 233-40.


Development of synaptic currents in immobilized muscle of Xenopus laevis., Kullberg R., J Physiol. July 1, 1985; 364 57-68.


Meiotic maturation in Xenopus oocytes: a link between the cessation of protein secretion and the polarized disappearance of Golgi apparati., Colman A., J Cell Biol. July 1, 1985; 101 (1): 313-8.


The effective membrane capacity of Xenopus eggs: its relations with membrane conductance and cortical granule exocytosis., Peres A., Pflugers Arch. July 1, 1985; 404 (3): 266-72.


Early specification for body position in mes-endodermal regions of an amphibian embryo., Cooke J., Cell Differ. July 1, 1985; 17 (1): 1-12.


Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage., Cooke J., J Embryol Exp Morphol. August 1, 1985; 88 85-112.


Dynamics of the control of body pattern in the development of Xenopus laevis. III. Timing and pattern after u.v. irradiation of the egg and after excision of presumptive head endo-mesoderm., Cooke J., J Embryol Exp Morphol. August 1, 1985; 88 135-50.


Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts., Lohka MJ., J Cell Biol. August 1, 1985; 101 (2): 518-23.


Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores., Busa WB., J Cell Biol. August 1, 1985; 101 (2): 677-82.


A protein inhibitor of calmodulin-regulated cyclic nucleotide phosphodiesterase in amphibian ovaries., Jedlicki E., Arch Biochem Biophys. August 15, 1985; 241 (1): 215-24.


Purification and characterization of an N-acetyl-beta-D-glucosaminidase from cortical granules of Xenopus laevis eggs., Prody GA., J Exp Zool. September 1, 1985; 235 (3): 335-40.


High diadenosine tetraphosphate (Ap4A) level in germ cells and embryos of sea urchin and Xenopus and its effect on DNA synthesis., Weinmann-Dorsch C., Exp Cell Res. September 1, 1985; 160 (1): 47-53.


Change of karyoskeleton during spermatogenesis of Xenopus: expression of lamin LIV, a nuclear lamina protein specific for the male germ line., Benavente R., Proc Natl Acad Sci U S A. September 1, 1985; 82 (18): 6176-80.          


Microgravity simulation as a probe for understanding early Xenopus pattern specification., Neff AW., J Embryol Exp Morphol. October 1, 1985; 89 259-74.


The wave of activation current in the Xenopus egg., Kline D., Dev Biol. October 1, 1985; 111 (2): 471-87.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???