Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (296) Expression Attributions Wiki
XB-ANAT-1521

Papers associated with extracellular matrix (and mmp9.1)

Limit to papers also referencing gene:
Show all extracellular matrix papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Expression of matrix metalloproteinase genes in regressing or remodeling organs during amphibian metamorphosis., Fujimoto K., Dev Growth Differ. February 1, 2007; 49 (2): 131-43.


Expression profiles of the duplicated matrix metalloproteinase-9 genes suggest their different roles in apoptosis of larval intestinal epithelial cells during Xenopus laevis metamorphosis., Hasebe T., Dev Dyn. August 1, 2007; 236 (8): 2338-45.  


Functional characterization of tissue inhibitor of metalloproteinase-1 (TIMP-1) N- and C-terminal domains during Xenopus laevis development., Nieuwesteeg MA., ScientificWorldJournal. January 30, 2014; 2014 467907.                


Thyroid Hormone Receptor α- and β-Knockout Xenopus tropicalis Tadpoles Reveal Subtype-Specific Roles During Development., Nakajima K., Endocrinology. February 1, 2018; 159 (2): 733-743.                


A unique role of thyroid hormone receptor β in regulating notochord resorption during Xenopus metamorphosis., Nakajima K., Gen Comp Endocrinol. June 1, 2019; 277 66-72.            


Comprehensive RNA-Seq analysis of notochord-enriched genes induced during Xenopus tropicalis tail resorption., Nakajima K., Gen Comp Endocrinol. February 1, 2020; 287 113349.              


Thyroid Hormone Receptor Is Essential for Larval Epithelial Apoptosis and Adult Epithelial Stem Cell Development but Not Adult Intestinal Morphogenesis during Xenopus tropicalis Metamorphosis., Shibata Y., Cells. March 3, 2021; 10 (3):                             


Fibroblast dedifferentiation as a determinant of successful regeneration., Lin TY., Dev Cell. May 17, 2021; 56 (10): 1541-1551.e6.                    

???pagination.result.page??? 1