Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3262) Expression Attributions Wiki
XB-ANAT-512

Papers associated with egg (and actl6a)

Limit to papers also referencing gene:
Show all egg papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Geometric diversity through permutation of backbone configuration in cyclic peptide libraries., Perlman ZE., Bioorg Med Chem Lett. December 1, 2005; 15 (23): 5329-34.


In vitro reconstitution of cdc42-mediated actin assembly using purified components., Ho HY., Methods Enzymol. January 1, 2006; 406 174-90.


Cdc42 and PI(4,5)P2-induced actin assembly in Xenopus egg extracts., Lebensohn AM., Methods Enzymol. January 1, 2006; 406 156-73.


A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP., Munro TP., J Cell Biol. February 13, 2006; 172 (4): 577-88.              


Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates., Adams DS., Development. May 1, 2006; 133 (9): 1657-71.              


A Serpin family gene, protease nexin-1 has an activity distinct from protease inhibition in early Xenopus embryos., Onuma Y., Mech Dev. June 1, 2006; 123 (6): 463-71.        


TPX2 is required for postmitotic nuclear assembly in cell-free Xenopus laevis egg extracts., O'Brien LL., J Cell Biol. June 5, 2006; 173 (5): 685-94.            


Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry?, Danilchik MV., Development. November 1, 2006; 133 (22): 4517-26.                        


pEg6, a spire family member, is a maternal gene encoding a vegetally localized mRNA in Xenopus embryos., Le Goff C., Biol Cell. December 1, 2006; 98 (12): 697-708.


Control of local actin assembly by membrane fusion-dependent compartment mixing., Yu HY., Nat Cell Biol. February 1, 2007; 9 (2): 149-59.


The E3 ubiquitin ligase skp2 regulates neural differentiation independent from the cell cycle., Boix-Perales H., Neural Dev. March 15, 2007; 2 27.                      


A kinematic description of the trajectories of Listeria monocytogenes propelled by actin comet tails., Shenoy VB., Proc Natl Acad Sci U S A. May 15, 2007; 104 (20): 8229-34.


Multiple myosins are required to coordinate actin assembly with coat compression during compensatory endocytosis., Yu HY., Mol Biol Cell. October 1, 2007; 18 (10): 4096-105.


H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry., Aw S., Mech Dev. January 1, 2008; 125 (3-4): 353-72.    


Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline., Christine KS., Dev Cell. April 1, 2008; 14 (4): 616-23.                                


Ectodermal factor restricts mesoderm differentiation by inhibiting p53., Sasai N., Cell. May 30, 2008; 133 (5): 878-90.                        


Changes in bicoid mRNA anchoring highlight conserved mechanisms during the oocyte-to-embryo transition., Weil TT., Curr Biol. July 22, 2008; 18 (14): 1055-61.


Polar body emission requires a RhoA contractile ring and Cdc42-mediated membrane protrusion., Zhang X., Dev Cell. September 1, 2008; 15 (3): 386-400.


Mutation of the zebrafish nucleoporin elys sensitizes tissue progenitors to replication stress., Davuluri G., PLoS Genet. October 1, 2008; 4 (10): e1000240.              


Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases., Yun C., J Cell Biol. November 17, 2008; 183 (4): 589-95.          


Resources and transgenesis techniques for functional genomics in Xenopus., Ogino H., Dev Growth Differ. May 1, 2009; 51 (4): 387-401.      


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


Bone morphogenetic protein 15 (BMP15) acts as a BMP and Wnt inhibitor during early embryogenesis., Di Pasquale E., J Biol Chem. September 18, 2009; 284 (38): 26127-36.                        


Xenopus meiotic microtubule-associated interactome., Gache V., PLoS One. February 2, 2010; 5 (2): e9248.          


Xenopus., Wallingford JB., Curr Biol. March 23, 2010; 20 (6): R263-4.  


Possible participation of calmodulin in the decondensation of nuclei isolated from guinea pig spermatozoa., Zepeda-Bastida A., Zygote. August 1, 2010; 18 (3): 217-29.


Appl1 is essential for the survival of Xenopus pancreas, duodenum, and stomach progenitor cells., Wen L., Dev Dyn. August 1, 2010; 239 (8): 2198-207.                                          


Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte., Gupta T., PLoS Genet. August 19, 2010; 6 (8): e1001073.              


Yolk nucleus--the complex assemblage of cytoskeleton and ER is a site of lipid droplet formation in spider oocytes., Jędrzejowska I., Arthropod Struct Dev. September 1, 2010; 39 (5): 350-9.


Self-assembly of filopodia-like structures on supported lipid bilayers., Lee K., Science. September 10, 2010; 329 (5997): 1341-5.


Quantitative analysis of actin turnover in Listeria comet tails: evidence for catastrophic filament turnover., Kueh HY., Biophys J. October 6, 2010; 99 (7): 2153-62.


A highly conserved Poc1 protein characterized in embryos of the hydrozoan Clytia hemisphaerica: localization and functional studies., Fourrage C., PLoS One. November 16, 2010; 5 (11): e13994.              


Growth-arrest-specific protein 2 inhibits cell division in Xenopus embryos., Zhang T., PLoS One. January 1, 2011; 6 (9): e24698.            


Effects of thioglycolic acid on parthenogenetic activation of Xenopus oocytes., Wang Z., PLoS One. January 7, 2011; 6 (1): e16220.            


Epigenetic reprogramming of breast cancer cells with oocyte extracts., Allegrucci C., Mol Cancer. January 13, 2011; 10 (1): 7.            


Towards high throughput production of artificial egg oocytes using microfluidics., Jimenez AM., Lab Chip. February 7, 2011; 11 (3): 429-34.


Nuclear import of an intact preassembled proteasome particle., Savulescu AF., Mol Biol Cell. March 15, 2011; 22 (6): 880-91.                


Embryonic and adult isoforms of XLAP2 form microdomains associated with chromatin and the nuclear envelope., Chmielewska M., Cell Tissue Res. April 1, 2011; 344 (1): 97-110.          


Drosophila Ctf4 is essential for efficient DNA replication and normal cell cycle progression., Gosnell JA., BMC Mol Biol. April 6, 2011; 12 13.            


The small GTPase Cdc42 promotes membrane protrusion during polar body emission via ARP2-nucleated actin polymerization., Leblanc J., Mol Hum Reprod. May 1, 2011; 17 (5): 305-16.


Phosphorylation of Claspin is triggered by the nucleocytoplasmic ratio at the Xenopus laevis midblastula transition., Gotoh T., Dev Biol. May 15, 2011; 353 (2): 302-8.          


Actin behavior in bulk cytoplasm is cell cycle regulated in early vertebrate embryos., Field CM., J Cell Sci. June 15, 2011; 124 (Pt 12): 2086-95.


Functional analysis of the microtubule-interacting transcriptome., Sharp JA., Mol Biol Cell. November 1, 2011; 22 (22): 4312-23.              


Dynamic interactions of high Cdt1 and geminin levels regulate S phase in early Xenopus embryos., Kisielewska J., Development. January 1, 2012; 139 (1): 63-74.              


Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus., Xu S., PLoS Biol. January 1, 2012; 10 (3): e1001286.                                    


Xenopus as a model system for the study of GOLPH2/GP73 function: Xenopus GOLPH2 is required for pronephros development., Li L., PLoS One. January 1, 2012; 7 (6): e38939.                                              


Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway., Fujimi TJ., Dev Biol. January 15, 2012; 361 (2): 220-31.                          


A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus., Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.                                      


Localisation of RNAs into the germ plasm of vitellogenic Xenopus oocytes., Nijjar S., PLoS One. January 1, 2013; 8 (4): e61847.                      


Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors., Nejigane S., Int J Dev Biol. January 1, 2013; 57 (5): 407-14.                      

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???