Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3262) Expression Attributions Wiki
XB-ANAT-512

Papers associated with egg (and actl6a)

Limit to papers also referencing gene:
Show all egg papers
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Microfilaments in the external surface layer of the early amphibian embryo., Perry MM., J Embryol Exp Morphol. February 1, 1975; 33 (1): 127-46.


Changes in protein synthesis during the development of Xenopus laevis., Ballantine JE., J Embryol Exp Morphol. June 1, 1979; 51 137-53.


Actin synthesis during the early development of Xenopus laevis., Sturgess EA., J Embryol Exp Morphol. August 1, 1980; 58 303-20.


A subcortical, pigment-containing structure in Xenopus eggs with contractile properties., Merriam RW., Dev Biol. February 1, 1983; 95 (2): 439-46.


Oocytes and early embryos of Xenopus laevis contain intermediate filaments which react with anti-mammalian vimentin antibodies., Godsave SF., J Embryol Exp Morphol. October 1, 1984; 83 169-87.


Ionic control of locomotion and shape of epithelial cells: I. Role of calcium influx., Mittal AK., Cell Motil. January 1, 1985; 5 (2): 123-36.


All components required for the eventual activation of muscle-specific actin genes are localized in the subequatorial region of an uncleaved amphibian egg., Gurdon JB., Proc Natl Acad Sci U S A. January 1, 1985; 82 (1): 139-43.


Influence of the polyamine spermine on the organization of cortical filaments in isolated cortices of Xenopus laevis eggs., Grant NJ., Eur J Cell Biol. March 1, 1985; 36 (2): 239-46.


Changes in the nuclear lamina composition during early development of Xenopus laevis., Stick R., Cell. May 1, 1985; 41 (1): 191-200.                


Actin genes in Xenopus and their developmental control., Gurdon JB., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 125-36.    


Cell interactions and the control of gene activity during early development of Xenopus laevis., Sargent TD., Dev Biol. March 1, 1986; 114 (1): 238-46.


Cortical activity in vertebrate eggs. I: The activation waves., Cheer A., J Theor Biol. February 21, 1987; 124 (4): 377-404.


Differential accumulation of oocyte nuclear proteins by embryonic nuclei of Xenopus., Dreyer C., Development. December 1, 1987; 101 (4): 829-46.                    


Expression and segregation of nucleoplasmin during development in Xenopus., Litvin J., Development. January 1, 1988; 102 (1): 9-21.                    


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


Proteins regulating actin assembly in oogenesis and early embryogenesis of Xenopus laevis: gelsolin is the major cytoplasmic actin-binding protein., Ankenbauer T., J Cell Biol. October 1, 1988; 107 (4): 1489-98.                  


Spatial reorganization of actin, tubulin and histone mRNAs during meiotic maturation and fertilization in Xenopus oocytes., Perry BA., Cell Differ Dev. November 1, 1988; 25 (2): 99-108.


The presence of fibroblast growth factor in the frog egg: its role as a natural mesoderm inducer., Kimelman D., Science. November 18, 1988; 242 (4881): 1053-6.


Bimodal and graded expression of the Xenopus homeobox gene Xhox3 during embryonic development., Ruiz i Altaba A., Development. May 1, 1989; 106 (1): 173-83.                  


The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus., Chu DT., Dev Biol. November 1, 1989; 136 (1): 104-17.                  


A retinoic acid receptor expressed in the early development of Xenopus laevis., Ellinger-Ziegelbauer H., Genes Dev. January 1, 1991; 5 (1): 94-104.              


Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts., Vale RD., Cell. February 22, 1991; 64 (4): 827-39.


Expression of genes encoding the transcription factor SRF during early development of Xenopus laevis: identification of a CArG box-binding activity as SRF., Mohun TJ., EMBO J. April 1, 1991; 10 (4): 933-40.


Developmental regulation of a serum response element binding activity in amphibian embryos., Varley J., Mol Reprod Dev. August 1, 1991; 29 (4): 323-36.


[The distribution and relation to the cytoskeleton of specific prosomal proteins in the oogenesis of the clawed toad]., Riabova LV., Ontogenez. January 1, 1992; 23 (4): 390-400.


Distribution of nonmuscle actin during Xenopus laevis development., Zelenka R., Folia Biol (Praha). January 1, 1992; 38 (5): 316-22.


Phosphorylation of myosin-II regulatory light chain by cyclin-p34cdc2: a mechanism for the timing of cytokinesis., Satterwhite LL., J Cell Biol. August 1, 1992; 118 (3): 595-605.


Amphibian intestinal villin: isolation and expression during embryonic and larval development., Heusser S., J Cell Sci. November 1, 1992; 103 ( Pt 3) 699-708.              


The role of protein kinase C in reorganization of the cortical cytoskeleton during the transition from oocyte to fertilization-competent egg., Capco DG., J Exp Zool. December 15, 1992; 264 (4): 395-405.


Characterization of the Xenopus Hox 2.4 gene and identification of control elements in its intron., Bittner D., Dev Dyn. January 1, 1993; 196 (1): 11-24.            


Local alteration of cortical actin in Xenopus eggs by the fertilizing sperm., Chow RL., Mol Reprod Dev. May 1, 1993; 35 (1): 69-75.


Membrane-associated lamins in Xenopus egg extracts: identification of two vesicle populations., Lourim D., J Cell Biol. November 1, 1993; 123 (3): 501-12.                  


Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo., Kinoshita K., Dev Biol. November 1, 1993; 160 (1): 276-84.        


Distribution of prosome proteins and their relationship with the cytoskeleton in oogenesis of Xenopus laevis., Ryabova LV., Mol Reprod Dev. February 1, 1994; 37 (2): 195-203.


Differential expression of a Distal-less homeobox gene Xdll-2 in ectodermal cell lineages., Dirksen ML., Mech Dev. April 1, 1994; 46 (1): 63-70.          


Development of cortical contractility in the Xenopus laevis oocyte mediated by reorganisation of the cortical cytoskeleton: a model., Ryabova LV., Zygote. August 1, 1994; 2 (3): 263-71.


[A 2-component cytoskeletal system as the basis of cortical contractility in clawed toad eggs]., Riabova LV., Ontogenez. January 1, 1995; 26 (3): 236-47.


Fascins, a family of actin bundling proteins., Edwards RA., Cell Motil Cytoskeleton. January 1, 1995; 32 (1): 1-9.


Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2., Forristall C., Development. January 1, 1995; 121 (1): 201-8.          


The bulk of unpolymerized actin in Xenopus egg extracts is ATP-bound., Rosenblatt J., Mol Biol Cell. February 1, 1995; 6 (2): 227-36.


The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions., Pannese M., Development. March 1, 1995; 121 (3): 707-20.                      


[The morphological criteria and proposed mechanisms of cortical contractility in oocytes of the clawed toad]., Riabova LV., Ontogenez. January 1, 1996; 27 (3): 165-72.


Immunodetection of cytoskeletal structures and the Eg5 motor protein on deep-etch replicas of Xenopus egg cortices isolated during the cortical rotation., Chang P., Biol Cell. January 1, 1996; 88 (3): 89-98.


Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development., Abe H., J Cell Biol. March 1, 1996; 132 (5): 871-85.                      


Cytoplasmic polyadenylation of activin receptor mRNA and the control of pattern formation in Xenopus development., Simon R., Dev Biol. October 10, 1996; 179 (1): 239-50.              


Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails., Rosenblatt J., J Cell Biol. March 24, 1997; 136 (6): 1323-32.            


A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation., Horb ME., Development. May 1, 1997; 124 (9): 1689-98.                    


Progesterone acts through protein kinase C to remodel the cytoplasm as the amphibian oocyte becomes the fertilization-competent egg., Johnson J., Mech Dev. October 1, 1997; 67 (2): 215-26.


Formation of new plasma membrane during the first cleavage cycle in the egg of Xenopus laevis: an immunocytological study., Aimar C., Dev Growth Differ. December 1, 1997; 39 (6): 693-704.          


A two-component cytoskeletal system of Xenopus laevis egg cortex: concept of its contractility., Ryabova LV., Int J Dev Biol. December 1, 1997; 41 (6): 843-51.            

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???