Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2145) Expression Attributions Wiki
XB-ANAT-3747

Papers associated with cytoplasm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The mitochondrial cloud of Xenopus oocytes: the source of germinal granule material., Heasman J., Dev Biol. October 1, 1984; 105 (2): 458-69.


Interaction between rat brain microtubule associated proteins (MAPs) and free ribosomes from Xenopus oocyte: a possible mechanism for the in ovo distribution of MAPs., Jessus C., Cell Differ. October 1, 1984; 14 (4): 295-301.


Oocytes and early embryos of Xenopus laevis contain intermediate filaments which react with anti-mammalian vimentin antibodies., Godsave SF., J Embryol Exp Morphol. October 1, 1984; 83 169-87.


The maturation response of stage IV, V, and VI Xenopus oocytes to progesterone stimulation in vitro., Wasserman WJ., Dev Biol. October 1, 1984; 105 (2): 315-24.


Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs., Krieg PA., Nucleic Acids Res. September 25, 1984; 12 (18): 7057-70.


Small nuclear U-ribonucleoproteins in Xenopus laevis development. Uncoupled accumulation of the protein and RNA components., Fritz A., J Mol Biol. September 15, 1984; 178 (2): 273-85.


Effect of estrogen on Xenopus laevis albumin mRNA levels., Zongza-Dimitriadis V., Mol Cell Biochem. September 1, 1984; 63 (2): 143-8.


Accumulation of the isolated carboxy-terminal domain of histone H1 in the Xenopus oocyte nucleus., Dingwall C., EMBO J. September 1, 1984; 3 (9): 1933-7.


Histone RNA in amphibian oocytes visualized by in situ hybridization to methacrylate-embedded tissue sections., Jamrich M., EMBO J. September 1, 1984; 3 (9): 1939-43.


Identification and localization of a novel nucleolar protein of high molecular weight by a monoclonal antibody., Schmidt-Zachmann MS., Exp Cell Res. August 1, 1984; 153 (2): 327-46.


Karyophobic proteins. A category of abundant soluble proteins which accumulate in the cytoplasm., Dabauvalle MC., Exp Cell Res. August 1, 1984; 153 (2): 308-26.


The role of the glycoconjugates in the migration of anuran amphibian germ cells., Delbos M., J Embryol Exp Morphol. August 1, 1984; 82 119-29.


Topography of the retinal ganglion cell layer of Xenopus., Graydon ML., J Anat. August 1, 1984; 139 ( Pt 1) 145-57.


Role of soluble myosin in cortical contractions of Xenopus eggs., Christensen K., Nature. July 12, 1984; 310 (5973): 150-1.


The thiol-disulfide balance during maturation of Xenopus laevis oocytes., Heidemann SR., J Exp Zool. July 1, 1984; 231 (1): 93-100.


Regulation of the cell cycle during early Xenopus development., Newport JW., Cell. July 1, 1984; 37 (3): 731-42.


Early cellular interactions promote embryonic axis formation in Xenopus laevis., Gimlich RL., Dev Biol. July 1, 1984; 104 (1): 117-30.


Effects of Ca2+ ions on the formation of metaphase chromosomes and sperm pronuclei in cell-free preparations from unactivated Rana pipiens eggs., Lohka MJ., Dev Biol. June 1, 1984; 103 (2): 434-42.


Exonucleases participating in the 3'end turnover of tRNA in Xenopus laevis., Solari A., Biochem Int. June 1, 1984; 8 (6): 831-41.


Heterogeneous distribution and replication activity of mitochondria in Xenopus laevis oocytes., Tourte M., Eur J Cell Biol. May 1, 1984; 34 (1): 171-8.


Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs., Karsenti E., J Cell Biol. May 1, 1984; 98 (5): 1730-45.


Experimental analyses of cytoplasmic rearrangements which follow fertilization and accompany symmetrization of inverted Xenopus eggs., Neff AW., J Embryol Exp Morphol. April 1, 1984; 80 197-224.


Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs., Gerhart J., J Cell Biol. April 1, 1984; 98 (4): 1247-55.


Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNAAsp: the dependence on the anticodon sequence., Haumont E., Nucleic Acids Res. March 26, 1984; 12 (6): 2705-15.


A monoclonal antibody to an oocyte-specific poly(A) RNA-binding protein., Richter JD., J Biol Chem. February 25, 1984; 259 (4): 2190-4.


The modifications of cortical endoplasmic reticulum during in vitro maturation of Xenopus laevis oocytes and its involvement in cortical granule exocytosis., Campanella C., J Exp Zool. February 1, 1984; 229 (2): 283-93.


The regulation of ribosomal protein S-6 phosphorylation in Xenopus oocytes: a potential role for intracellular pH., Wasserman WJ., Dev Biol. February 1, 1984; 101 (2): 436-45.


Participation of calcium and calmodulin in the formation of acetylcholine receptor clusters., Peng HB., J Cell Biol. February 1, 1984; 98 (2): 550-7.


[Dynamics of the redistribution of pigment granules in the dermal melanophores of anuran amphibians. 1. Dispersion]., Nikeriasova EN., Ontogenez. January 1, 1984; 15 (6): 616-25.


[Nuclear behavior of embryonic cells and growing oocytes from the clawed toad in the cytoplasm of maturing axolotl oocytes]., Nikitina LA., Ontogenez. January 1, 1984; 15 (5): 535-8.


Delayed fertilization of anuran amphibian (Xenopus) eggs leads to reduced numbers of primordial germ cells., Wakahara M., Gamete Res. January 1, 1984; 9 (4): 361-73.


Influence of clinostat rotation on fertilized amphibian egg pattern specification., Neff AW., Physiologist. January 1, 1984; 27 (6 Suppl): S139-40.


Replication, integration and expression of exogenous DNA injected into fertilized eggs of Xenopus laevis., Etkin Ld., Differentiation. January 1, 1984; 26 (3): 194-202.


[Glomus cell in controlling vascular tone of the carotid labyrinth (Xenopus laevis)]., Kusakabe T., Nihon Seirigaku Zasshi. January 1, 1984; 46 (10): 623-33.


[Does Masui's Ca-sensitive cytostatic factor exist in the cytoplasm of mature nonactivated eggs of Acipenser stellatus, Rana temporaria and Xenopus laevis?]., Riabova LV., Ontogenez. January 1, 1984; 15 (1): 93-7.


Karyoskeletal proteins and the organization of the amphibian oocyte nucleus., Benavente R., J Cell Sci Suppl. January 1, 1984; 1 161-86.   


Subcellular distribution of ribosomal proteins S6 and eL12. Analysis by autoradiography and immunofluorescence of sections from oocytes of Xenopus laevis., Darmer D., Cell Tissue Res. January 1, 1984; 237 (2): 353-6.


Pronounced structural similarities between the small subunit ribosomal RNA genes of wheat mitochondria and Escherichia coli., Spencer DF., Proc Natl Acad Sci U S A. January 1, 1984; 81 (2): 493-7.


Localization of soluble endogenous lectins and their ligands at specific extracellular sites., Barondes SH., Biol Cell. January 1, 1984; 51 (2): 165-72.


Appearance and Distribution of RNA-Rich Cytoplasms in the Embryo of Xenopus laevis during Early Development: (germinal vesicle material/dorsal yolk-free cytoplasm/blastulation/mesoderm formation/Xenopus laevis)., Imoh H., Dev Growth Differ. January 1, 1984; 26 (2): 167-176.


Regulation of cell cycle by cytoplasmic components in the amphibian eggs., Aimar C., Cell Differ. December 1, 1983; 13 (4): 293-300.


Two-dimensional gel analysis of the fate of oocyte nuclear proteins in the development of Xenopus laevis., Dreyer C., Dev Biol. December 1, 1983; 100 (2): 412-25.


Cytoplasmic phases in the first cell cycle of the activated frog egg., Elinson RP., Dev Biol. December 1, 1983; 100 (2): 440-51.


Microinjection of vesicular stomatitis virus ribonucleoprotein into animal cells yields infectious virus., Thornton GB., Biochem Biophys Res Commun. November 15, 1983; 116 (3): 1160-7.


The 22 S cylinder particles of Xenopus laevis. II. Immunological characterization and localization of their proteins in tissues and cultured cells., Hügle B., Eur J Cell Biol. November 1, 1983; 32 (1): 157-63.


The 22 S cylinder particles of Xenopus laevis. I. Biochemical and electron microscopic characterization., Kleinschmidt JA., Eur J Cell Biol. November 1, 1983; 32 (1): 143-56.


The interval of the cytoplasmic cycle observed in non-nucleate egg fragments is longer than that of the cleavage cycle in normal eggs of Xenopus laevis., Shinagawa A., J Cell Sci. November 1, 1983; 64 147-62.


tRNA transport from the nucleus in a eukaryotic cell: carrier-mediated translocation process., Zasloff M., Proc Natl Acad Sci U S A. November 1, 1983; 80 (21): 6436-40.


Signal sequences, secondary modification and the turnover of miscompartmentalized secretory proteins in Xenopus oocytes., Lane CD., Eur J Biochem. October 17, 1983; 136 (1): 141-6.


The germinal vesicle material required for sperm pronuclear formation is located in the soluble fraction of egg cytoplasm., Lohka MJ., Exp Cell Res. October 15, 1983; 148 (2): 481-91.

???pagination.result.page??? ???pagination.result.prev??? 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ???pagination.result.next???