Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (9009) Expression Attributions Wiki
XB-ANAT-3335

Papers associated with cell part (and kcnj1)

Limit to papers also referencing gene:
Show all cell part papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Identification of a unique endoplasmic retention motif in the Xenopus GIRK5 channel and its contribution to oocyte maturation., Rangel-Garcia CI., FEBS Open Bio. April 1, 2021; 11 (4): 1093-1108.            


Direct injection of cell-free Kir1.1 protein into Xenopus oocytes replicates single-channel currents derived from Kir1.1 mRNA., Sackin H., Channels (Austin). January 1, 2015; 9 (4): 196-9.        


Hypertension resistance polymorphisms in ROMK (Kir1.1) alter channel function by different mechanisms., Fang L., Am J Physiol Renal Physiol. December 1, 2010; 299 (6): F1359-64.


Comparative analysis of cholesterol sensitivity of Kir channels: role of the CD loop., Rosenhouse-Dantsker A., Channels (Austin). January 1, 2010; 4 (1): 63-6.


Structural changes in the cytoplasmic pore of the Kir1.1 channel during pHi-gating probed by FRET., Lee JR., J Biomed Sci. March 6, 2009; 16 29.      


WNK3 positively regulates epithelial calcium channels TRPV5 and TRPV6 via a kinase-dependent pathway., Zhang W., Am J Physiol Renal Physiol. November 1, 2008; 295 (5): F1472-84.


Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros., Tran U., Dev Biol. July 1, 2007; 307 (1): 152-64.                  


Localization of the pH gate in Kir1.1 channels., Zhang YY., Biophys J. October 15, 2006; 91 (8): 2901-9.


Involvement of Golgin-160 in cell surface transport of renal ROMK channel: co-expression of Golgin-160 increases ROMK currents., Bundis F., Cell Physiol Biochem. January 1, 2006; 17 (1-2): 1-12.


A phosphorylation-dependent export structure in ROMK (Kir 1.1) channel overrides an endoplasmic reticulum localization signal., Yoo D., J Biol Chem. October 21, 2005; 280 (42): 35281-9.


Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K+ channel (ROMK)., O'Connell AD., Proc Natl Acad Sci U S A. July 12, 2005; 102 (28): 9954-9.


Apical localization of renal K channel was not altered in mutant WNK4 transgenic mice., Yamauchi K., Biochem Biophys Res Commun. July 8, 2005; 332 (3): 750-5.


ROMK1 channel activity is regulated by monoubiquitination., Lin DH., Proc Natl Acad Sci U S A. March 22, 2005; 102 (12): 4306-11.


Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling., Dahlmann A., J Gen Physiol. April 1, 2004; 123 (4): 441-54.                          


WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia., Kahle KT., Proc Natl Acad Sci U S A. February 17, 2004; 101 (7): 2064-9.


Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats., Wu J., J Membr Biol. February 1, 2004; 197 (3): 179-91.


Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A., Yoo D., J Biol Chem. June 20, 2003; 278 (25): 23066-75.


The serum and glucocorticoid-inducible kinase SGK1 and the Na+/H+ exchange regulating factor NHERF2 synergize to stimulate the renal outer medullary K+ channel ROMK1., Yun CC., J Am Soc Nephrol. December 1, 2002; 13 (12): 2823-30.


Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles., Zeng WZ., Am J Physiol Renal Physiol. October 1, 2002; 283 (4): F630-9.


Intrinsic sensitivity of Kir1.1 (ROMK) to glibenclamide in the absence of SUR2B. Implications for the identity of the renal ATP-regulated secretory K+ channel., Konstas AA., J Biol Chem. June 14, 2002; 277 (24): 21346-51.


Barttin increases surface expression and changes current properties of ClC-K channels., Waldegger S., Pflugers Arch. June 1, 2002; 444 (3): 411-8.


PKA-induced stimulation of ROMK1 channel activity is governed by both tethering and non-tethering domains of an A kinase anchor protein., Ali S., Cell Physiol Biochem. January 1, 2001; 11 (3): 135-42.


Processing and transport of ROMK1 channel is temperature-sensitive., Brejon M., Biochem Biophys Res Commun. August 2, 1999; 261 (2): 364-71.


Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma., Huang CL., Nature. February 19, 1998; 391 (6669): 803-6.


Probing the water permeability of ROMK1 and amphotericin B channels using Xenopus oocytes., Sabirov RZ., Biochim Biophys Acta. January 5, 1998; 1368 (1): 19-26.


Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail., Dascal N., Proc Natl Acad Sci U S A. July 18, 1995; 92 (15): 6758-62.


Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel., Lu Z., Nature. September 15, 1994; 371 (6494): 243-6.


Cloning and expression of a novel human brain inward rectifier potassium channel., Makhina EN., J Biol Chem. August 12, 1994; 269 (32): 20468-74.

???pagination.result.page??? 1