Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3729) Expression Attributions Wiki
XB-ANAT-99

Papers associated with cardiovascular system (and actl6a)

Limit to papers also referencing gene:
Show all cardiovascular system papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4

Sort Newest To Oldest Sort Oldest To Newest

GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression., Sepulveda JL., Mol Cell Biol. June 1, 1998; 18 (6): 3405-15.


Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning., Nakayama T., Development. March 1, 1998; 125 (5): 857-67.                  


Xenopus eHAND: a marker for the developing cardiovascular system of the embryo that is regulated by bone morphogenetic proteins., Sparrow DB., Mech Dev. February 1, 1998; 71 (1-2): 151-63.            


Retinoic acid can block differentiation of the myocardium after heart specification., Drysdale TA., Dev Biol. August 15, 1997; 188 (2): 205-15.          


Organization and myogenic restricted expression of the murine serum response factor gene. A role for autoregulation., Belaguli NS., J Biol Chem. July 18, 1997; 272 (29): 18222-31.


Competition between negative acting YY1 versus positive acting serum response factor and tinman homologue Nkx-2.5 regulates cardiac alpha-actin promoter activity., Chen CY., Mol Endocrinol. June 1, 1997; 11 (6): 812-22.


Laminin-induced clustering of dystroglycan on embryonic muscle cells: comparison with agrin-induced clustering., Cohen MW., J Cell Biol. March 10, 1997; 136 (5): 1047-58.                                              


Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors., Gove C., EMBO J. January 15, 1997; 16 (2): 355-68.


Fine structural immunocytochemistry of catenins in amphibian and mammalian muscle., Kurth T., Cell Tissue Res. October 1, 1996; 286 (1): 1-12.


Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells., van der Loop FT., J Cell Biol. July 1, 1996; 134 (2): 401-11.    


Cloning and expression of Xenopus CCT gamma, a chaperonin subunit developmentally regulated in neural-derived and myogenic lineages., Dunn MK., Dev Dyn. April 1, 1996; 205 (4): 387-94.              


The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis., Jiang Y., Dev Biol. March 15, 1996; 174 (2): 258-70.          


Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development., Abe H., J Cell Biol. March 1, 1996; 132 (5): 871-85.                      


Activation of the cardiac alpha-actin promoter depends upon serum response factor, Tinman homologue, Nkx-2.5, and intact serum response elements., Chen CY., Dev Genet. January 1, 1996; 19 (2): 119-30.


Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction., Hawley SH., Genes Dev. December 1, 1995; 9 (23): 2923-35.                


Bone morphogenetic protein 2 in the early development of Xenopus laevis., Clement JH., Mech Dev. August 1, 1995; 52 (2-3): 357-70.            


Effect of an inhibitory mutant of the FGF receptor on mesoderm-derived alpha-smooth muscle actin-expressing cells in Xenopus embryo., Saint-Jeannet JP., Dev Biol. August 1, 1994; 164 (2): 374-82.          


The RSRF/MEF2 protein SL1 regulates cardiac muscle-specific transcription of a myosin light-chain gene in Xenopus embryos., Chambers AE., Genes Dev. June 1, 1994; 8 (11): 1324-34.              


Xenopus embryos regulate the nuclear localization of XMyoD., Rupp RA., Genes Dev. June 1, 1994; 8 (11): 1311-23.              


Differential expression of a Distal-less homeobox gene Xdll-2 in ectodermal cell lineages., Dirksen ML., Mech Dev. April 1, 1994; 46 (1): 63-70.          


Molecular characterization of a swelling-induced chloride conductance regulatory protein, pICln., Krapivinsky GB., Cell. February 11, 1994; 76 (3): 439-48.


Induction of cardiac muscle differentiation in isolated animal pole explants of Xenopus laevis embryos., Logan M., Development. July 1, 1993; 118 (3): 865-75.              


Characterization of the GArC motif. A novel cis-acting element of the human cardiac myosin heavy chain genes., Mably JD., J Biol Chem. January 5, 1993; 268 (1): 476-82.


Sexually dimorphic expression of a laryngeal-specific, androgen-regulated myosin heavy chain gene during Xenopus laevis development., Catz DS., Dev Biol. December 1, 1992; 154 (2): 366-76.              


Expression of tenascin mRNA in mesoderm during Xenopus laevis embryogenesis: the potential role of mesoderm patterning in tenascin regionalization., Umbhauer M., Development. September 1, 1992; 116 (1): 147-57.            


Ventrolateral regionalization of Xenopus laevis mesoderm is characterized by the expression of alpha-smooth muscle actin., Saint-Jeannet JP., Development. August 1, 1992; 115 (4): 1165-73.          


The uvomorulin-anchorage protein alpha catenin is a vinculin homologue., Herrenknecht K., Proc Natl Acad Sci U S A. October 15, 1991; 88 (20): 9156-60.


Antimicrobial peptides in the stomach of Xenopus laevis., Moore KS., J Biol Chem. October 15, 1991; 266 (29): 19851-7.              


A family of muscle gene promoter element (CArG) binding activities in Xenopus embryos: CArG/SRE discrimination and distribution during myogenesis., Taylor MV., Nucleic Acids Res. May 25, 1991; 19 (10): 2669-75.


Expression of SPARC/osteonectin in tissues of bony and cartilaginous vertebrates., Ringuette M., Biochem Cell Biol. April 1, 1991; 69 (4): 245-50.


Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization., Hemmati-Brivanlou A., Development. October 1, 1990; 110 (2): 325-30.  


Spreading of trypsinized cells: cytoskeletal dynamics and energy requirements., Bereiter-Hahn J., J Cell Sci. May 1, 1990; 96 ( Pt 1) 171-88.


MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos., Hopwood ND., EMBO J. November 1, 1989; 8 (11): 3409-17.


Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin., Herrmann H., Development. February 1, 1989; 105 (2): 299-307.              


Proteins regulating actin assembly in oogenesis and early embryogenesis of Xenopus laevis: gelsolin is the major cytoplasmic actin-binding protein., Ankenbauer T., J Cell Biol. October 1, 1988; 107 (4): 1489-98.                  


Increase of cytosolic calcium results in formation of F-actin aggregates in endothelial cells., Stolz B., Cell Biol Int Rep. April 1, 1988; 12 (4): 321-9.


Expression and segregation of nucleoplasmin during development in Xenopus., Litvin J., Development. January 1, 1988; 102 (1): 9-21.                    


An amphibian cytoskeletal-type actin gene is expressed exclusively in muscle tissue., Mohun TJ., Development. October 1, 1987; 101 (2): 393-402.              


Autoantibodies in hypertrophic cardiomyopathy and their clinical significance., Gregor P., Eur Heart J. July 1, 1987; 8 (7): 773-8.


A processed gene coding for a sarcomeric actin in Xenopus laevis and Xenopus tropicalis., Stutz F., EMBO J. July 1, 1987; 6 (7): 1989-95.


Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man., Jahn L., Differentiation. January 1, 1987; 36 (3): 234-54.                        


Tissue-specific expression of actin genes injected into Xenopus embryos., Wilson C., Cell. November 21, 1986; 47 (4): 589-99.


Interaction of metabolic inhibitors with actin fibrils., Bereiter-Hahn J., Cell Tissue Res. January 1, 1984; 238 (1): 129-34.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4