Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (521) Expression Attributions Wiki
XB-ANAT-3595

Papers associated with basal ganglion

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and tadpole and frog growth., Rose CS., J Anat. June 1, 2015; 226 (6): 575-95.


9B.03: A NOVEL INSERTIONAL SOMATIC KCNJ5 MUTATION IN AN AUSTRALIAN PATIENT WITH AN ALDOSTERONE PRODUCING ADENOMA., Xu S., J Hypertens. June 1, 2015; 33 Suppl 1 e120.


Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development., Stith BJ., Dev Biol. May 15, 2015; 401 (2): 188-205.


The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81., Herrmann NJ., Nucleic Acids Res. April 20, 2015; 43 (7): 3653-66.              


Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development., Domínguez L., Neuroscience. April 2, 2015; 290 61-79.  


Force production and mechanical accommodation during convergent extension., Zhou J., Development. February 15, 2015; 142 (4): 692-701.              


Regulation of ECM degradation and axon guidance by growth cone invadosomes., Santiago-Medina M., Development. February 1, 2015; 142 (3): 486-96.                        


A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements., Square T., Dev Biol. January 15, 2015; 397 (2): 293-304.                                            


A Molecular atlas of Xenopus respiratory system development., Rankin SA, Rankin SA., Dev Dyn. January 1, 2015; 244 (1): 69-85.                    


Characterization of tweety gene (ttyh1-3) expression in Xenopus laevis during embryonic development., Halleran AD., Gene Expr Patterns. January 1, 2015; 17 (1): 38-44.                            


A Single Amino Acid Deletion (ΔF1502) in the S6 Segment of CaV2.1 Domain III Associated with Congenital Ataxia Increases Channel Activity and Promotes Ca2+ Influx., Bahamonde MI., PLoS One. January 1, 2015; 10 (12): e0146035.                


Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull., Piekarski N., Nat Commun. December 1, 2014; 5 5661.                


Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects., Csanády L., J Gen Physiol. October 1, 2014; 144 (4): 321-36.                    


Fast phasic release properties of dopamine studied with a channel biosensor., Kress GJ., J Neurosci. August 27, 2014; 34 (35): 11792-802.


Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity., Sojka S., Development. August 1, 2014; 141 (15): 3040-9.                


Sirtuin inhibitor Ex-527 causes neural tube defects, ventral edema formations, and gastrointestinal malformations in Xenopus laevis embryos., Ohata Y., Dev Growth Differ. August 1, 2014; 56 (6): 460-8.          


The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling., Jacox L., Cell Rep. July 24, 2014; 8 (2): 596-609.                            


Lipid domain-dependent regulation of single-cell wound repair., Vaughan EM., Mol Biol Cell. June 15, 2014; 25 (12): 1867-76.              


The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation in vivo and in vitro., Ali FR., Development. June 1, 2014; 141 (11): 2216-24.            


Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents., Gilchrist J., ACS Chem Biol. May 16, 2014; 9 (5): 1204-12.          


Evidence for a role of transporter-mediated currents in the depletion of brain serotonin induced by serotonin transporter substrates., Baumann MH., Neuropsychopharmacology. May 1, 2014; 39 (6): 1355-65.          


Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis., Bandín S., J Chem Neuroanat. May 1, 2014; 57-58 24-41.


Mammalian-specific sequences in pou3f2 contribute to maternal behavior., Nasu M., Genome Biol Evol. April 7, 2014; 6 (5): 1145-56.              


Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions., Domínguez L., J Comp Neurol. April 1, 2014; 522 (5): 1102-31.                                      


Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization., Bates RC., Dev Biol. February 1, 2014; 386 (1): 165-80.


Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate., Durisic N., Nat Methods. February 1, 2014; 11 (2): 156-62.


Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process., Garneau L., J Gen Physiol. February 1, 2014; 143 (2): 289-307.                      


Catalyst-like modulation of transition states for CFTR channel opening and closing: new stimulation strategy exploits nonequilibrium gating., Csanády L., J Gen Physiol. February 1, 2014; 143 (2): 269-87.                        


Two different vestigial like 4 genes are differentially expressed during Xenopus laevis development., Barrionuevo MG., Int J Dev Biol. January 1, 2014; 58 (5): 369-77.            


Vertical signalling involves transmission of Hox information from gastrula mesoderm to neurectoderm., Bardine N., PLoS One. January 1, 2014; 9 (12): e115208.          


Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              


Plasticity of lung development in the amphibian, Xenopus laevis., Rose CS., Biol Open. December 15, 2013; 2 (12): 1324-35.      


Physiological concentrations of zinc reduce taurine-activated GlyR responses to drugs of abuse., Kirson D., Neuropharmacology. December 1, 2013; 75 286-94.


The structure and development of Xenopus laevis cornea., Hu W., Exp Eye Res. November 1, 2013; 116 109-28.                            


Multiple mechanisms underlying rectification in retinal cyclic nucleotide-gated (CNGA1) channels., Arcangeletti M., Physiol Rep. November 1, 2013; 1 (6): e00148.                        


Tuning voltage-gated channel activity and cellular excitability with a sphingomyelinase., Combs DJ., J Gen Physiol. October 1, 2013; 142 (4): 367-80.                    


The Xenopus amygdala mediates socially appropriate vocal communication signals., Hall IC., J Neurosci. September 4, 2013; 33 (36): 14534-48.                


mRNA fluorescence in situ hybridization to determine overlapping gene expression in whole-mount mouse embryos., Neufeld SJ., Dev Dyn. September 1, 2013; 242 (9): 1094-100.    


Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12)., Chowanadisai W., Proc Natl Acad Sci U S A. June 11, 2013; 110 (24): 9903-8.                


The neurogenic factor NeuroD1 is expressed in post-mitotic cells during juvenile and adult Xenopus neurogenesis and not in progenitor or radial glial cells., D'Amico LA., PLoS One. June 11, 2013; 8 (6): e66487.          


Potassium-chloride cotransporter 3 interacts with Vav2 to synchronize the cell volume decrease response with cell protrusion dynamics., Salin-Cantegrel A., PLoS One. May 15, 2013; 8 (5): e65294.            


The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks., Lee J., Mol Biol Cell. May 1, 2013; 24 (9): 1343-53.          


β-Adrenergic signaling promotes posteriorization in Xenopus early development., Mori S., Dev Growth Differ. April 1, 2013; 55 (3): 350-8.            


Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides., Dai G., J Gen Physiol. April 1, 2013; 141 (4): 413-30.                


Evolution of dopamine receptor genes of the D1 class in vertebrates., Yamamoto K., Mol Biol Evol. April 1, 2013; 30 (4): 833-43.              


Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels., Sauguet L., EMBO J. March 6, 2013; 32 (5): 728-41.                


Early development of the thymus in Xenopus laevis., Lee YH, Lee YH., Dev Dyn. February 1, 2013; 242 (2): 164-78.                            


Imparting regenerative capacity to limbs by progenitor cell transplantation., Lin G., Dev Cell. January 14, 2013; 24 (1): 41-51.                          


Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development., Morona R., J Comp Neurol. January 1, 2013; 521 (1): 79-108.                  


Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism., Pérez Y., Sci Rep. January 1, 2013; 3 1295.                

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???