Results 1 - 41 of 41 results
Myelopoiesis of the Amphibian Xenopus laevis Is Segregated to the Bone Marrow, Away From Their Hematopoietic Peripheral Liver. , Yaparla A., Front Immunol. April 4, 2019; 10 3015.
Etv6 activates vegfa expression through positive and negative transcriptional regulatory networks in Xenopus embryos. , Li L., Nat Commun. March 6, 2019; 10 (1): 1083.
Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. , Gentsch GE ., Dev Cell. March 12, 2018; 44 (5): 597-610.e10.
Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. , Hassnain Waqas SF., J Leukoc Biol. September 1, 2017; 102 (3): 845-855.
Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage. , Kirmizitas A., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5814-5821.
Tril targets Smad7 for degradation to allow hematopoietic specification in Xenopus embryos. , Green YS., Development. November 1, 2016; 143 (21): 4016-4026.
GATA2 regulates Wnt signaling to promote primitive red blood cell fate. , Mimoto MS., Dev Biol. November 1, 2015; 407 (1): 1-11.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny. , Nimmo R., Dev Cell. August 12, 2013; 26 (3): 237-49.
VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus. , Ciau-Uitz A ., Development. June 1, 2013; 140 (12): 2632-42.
Regulation of primitive hematopoiesis by class I histone deacetylases. , Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.
Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification. , Leung A., Dev Cell. January 28, 2013; 24 (2): 144-58.
Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors. , Nejigane S., Int J Dev Biol. January 1, 2013; 57 (5): 407-14.
The role of heterodimeric AP-1 protein comprised of JunD and c- Fos proteins in hematopoiesis. , Lee SY., J Biol Chem. September 7, 2012; 287 (37): 31342-8.
Xenopus er71 is involved in vascular development. , Neuhaus H ., Dev Dyn. December 1, 2010; 239 (12): 3436-45.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
Tel1/ ETV6 specifies blood stem cells through the agency of VEGF signaling. , Ciau-Uitz A ., Dev Cell. April 20, 2010; 18 (4): 569-78.
Genetic control of hematopoietic development in Xenopus and zebrafish. , Ciau-Uitz A ., Int J Dev Biol. January 1, 2010; 54 (6-7): 1139-49.
The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development. , Kazanskaya O., Development. November 1, 2008; 135 (22): 3655-64.
spib is required for primitive myeloid development in Xenopus. , Costa RM ., Blood. September 15, 2008; 112 (6): 2287-96.
Fli1 acts at the top of the transcriptional network driving blood and endothelial development. , Liu F., Curr Biol. August 26, 2008; 18 (16): 1234-40.
Crossveinless-2 Is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning. , Ambrosio AL., Dev Cell. August 1, 2008; 15 (2): 248-60.
Fibroblast growth factor controls the timing of Scl, Lmo2, and Runx1 expression during embryonic blood development. , Walmsley M., Blood. February 1, 2008; 111 (3): 1157-66.
A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis. , Shibata T., Mech Dev. January 1, 2008; 125 (3-4): 284-98.
The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. , Sander V., EMBO J. June 20, 2007; 26 (12): 2955-65.
FGF4 regulates blood and muscle specification in Xenopus laevis. , Isaacs HV ., Biol Cell. March 1, 2007; 99 (3): 165-73.
ADMP2 is essential for primitive blood and heart development in Xenopus. , Kumano G ., Dev Biol. November 15, 2006; 299 (2): 411-23.
Cloning and expression pattern of the Xenopus erythropoietin receptor. , Yergeau DA., Gene Expr Patterns. April 1, 2006; 6 (4): 420-5.
Zygotic nucleosome assembly protein-like 1 has a specific, non-cell autonomous role in hematopoiesis. , Abu-Daya A., Blood. July 15, 2005; 106 (2): 514-20.
Essential role of HGF ( hepatocyte growth factor) in blood formation in Xenopus. , Koibuchi N., Blood. May 1, 2004; 103 (9): 3320-5.
The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm. , Collavin L., Development. February 1, 2003; 130 (4): 805-16.
Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. , Walmsley M., Development. December 1, 2002; 129 (24): 5683-95.
XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus. , Smith SJ ., Mech Dev. September 1, 2002; 117 (1-2): 173-86.
Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. , Göttgens B., EMBO J. June 17, 2002; 21 (12): 3039-50.
Role of the thrombopoietin ( TPO)/Mpl system: c-Mpl-like molecule/ TPO signaling enhances early hematopoiesis in Xenopus laevis. , Kakeda M., Dev Growth Differ. February 1, 2002; 44 (1): 63-75.
Primitive erythropoiesis in the Xenopus embryo: the synergistic role of LMO-2, SCL and GATA-binding proteins. , Mead PE ., Development. June 1, 2001; 128 (12): 2301-8.
FLRF, a novel evolutionarily conserved RING finger gene, is differentially expressed in mouse fetal and adult hematopoietic stem cells and progenitors. , Abdullah JM., Blood Cells Mol Dis. January 1, 2001; 27 (1): 320-33.
Distinct origins of adult and embryonic blood in Xenopus. , Ciau-Uitz A ., Cell. September 15, 2000; 102 (6): 787-96.
Spatial and temporal properties of ventral blood island induction in Xenopus laevis. , Kumano G ., Development. December 1, 1999; 126 (23): 5327-37.
SCL specifies hematopoietic mesoderm in Xenopus embryos. , Mead PE ., Development. July 1, 1998; 125 (14): 2611-20.
Transcriptional regulation of blood formation during Xenopus development. , Huber TL., Semin Immunol. April 1, 1998; 10 (2): 103-9.