Results 1 - 12 of 12 results
Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage. , Kirmizitas A., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5814-5821.
Identification of genes expressed in the migrating primitive myeloid lineage of Xenopus laevis. , Agricola ZN., Dev Dyn. January 1, 2016; 245 (1): 47-55.
Nkx2.5 is involved in myeloid cell differentiation at anterior ventral blood islands in the Xenopus embryo. , Sakata H., Dev Growth Differ. October 1, 2014; 56 (8): 544-54.
MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny. , Nimmo R., Dev Cell. August 12, 2013; 26 (3): 237-49.
VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus. , Ciau-Uitz A ., Development. June 1, 2013; 140 (12): 2632-42.
Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification. , Leung A., Dev Cell. January 28, 2013; 24 (2): 144-58.
Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors. , Nejigane S., Int J Dev Biol. January 1, 2013; 57 (5): 407-14.
Early cardiac morphogenesis defects caused by loss of embryonic macrophage function in Xenopus. , Smith SJ ., Mech Dev. January 1, 2011; 128 (5-6): 303-15.
ETS family protein ETV2 is required for initiation of the endothelial lineage but not the hematopoietic lineage in the Xenopus embryo. , Salanga MC ., Dev Dyn. April 1, 2010; 239 (4): 1178-87.
Genetic control of hematopoietic development in Xenopus and zebrafish. , Ciau-Uitz A ., Int J Dev Biol. January 1, 2010; 54 (6-7): 1139-49.
spib is required for primitive myeloid development in Xenopus. , Costa RM ., Blood. September 15, 2008; 112 (6): 2287-96.
Fli1 acts at the top of the transcriptional network driving blood and endothelial development. , Liu F., Curr Biol. August 26, 2008; 18 (16): 1234-40.