Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (55) Attributions Wiki

Papers associated with NF stage 44

Limit to papers also referencing gene:
Results 1 - 50 of 55 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

E-cadherin is required for cranial neural crest migration in Xenopus laevis., Huang C, Kratzer MC, Wedlich D, Kashef J., Dev Biol. March 15, 2016; 411 (2): 159-171.                        

Xenopus Limb bud morphogenesis., Keenan SR, Beck CW., Dev Dyn. March 1, 2016; 245 (3): 233-43.            

Semicircular canal-dependent developmental tuning of translational vestibulo-ocular reflexes in Xenopus laevis., Branoner F, Straka H., Dev Neurobiol. October 1, 2015; 75 (10): 1051-67.            

Involvement of Slit-Robo signaling in the development of the posterior commissure and concomitant swimming behavior in Xenopus laevis., Tosa Y, Tsukano K, Itoyama T, Fukagawa M, Nii Y, Ishikawa R, Suzuki KT, Fukui M, Kawaguchi M, Murakami Y., Zoological Lett. June 15, 2015; 1 28.                      

Tcf21 regulates the specification and maturation of proepicardial cells., Tandon P, Miteva YV, Kuchenbrod LM, Cristea IM, Conlon FL., Development. June 1, 2013; 140 (11): 2409-21.                                

Retinoic acid homeostasis regulates meiotic entry in developing anuran gonads and in Bidder's organ through Raldh2 and Cyp26b1 proteins., Piprek RP, Pecio A, Laskowska-Kaszub K, Kloc M, Kubiak JZ, Szymura JM., Mech Dev. January 1, 2013; 130 (11-12): 613-27.            

Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells., Oropeza D, Horb M., Genesis. March 1, 2012; 50 (3): 271-85.                        

Embryonic and adult isoforms of XLAP2 form microdomains associated with chromatin and the nuclear envelope., Chmielewska M, Dubińska-Magiera M, Sopel M, Rzepecka D, Hutchison CJ, Goldberg MW, Rzepecki R., Cell Tissue Res. April 1, 2011; 344 (1): 97-110.          

The secreted integrin ligand nephronectin is necessary for forelimb formation in Xenopus tropicalis., Abu-Daya A, Nishimoto S, Fairclough L, Mohun TJ, Logan MP, Zimmerman LB., Dev Biol. January 15, 2011; 349 (2): 204-12.                                

Developmental expression of sideroflexin family genes in Xenopus embryos., Li X, Han D, Kin Ting Kam R, Guo X, Chen M, Yang Y, Zhao H, Chen Y, Chen Y., Dev Dyn. October 1, 2010; 239 (10): 2742-7.                                        

BrunoL1 regulates endoderm proliferation through translational enhancement of cyclin A2 mRNA., Horb LD, Horb ME., Dev Biol. September 15, 2010; 345 (2): 156-69.                

A developmental sensitive period for spike timing-dependent plasticity in the retinotectal projection., Tsui J, Schwartz N, Ruthazer ES., Front Synaptic Neurosci. June 10, 2010; 2 13.            

Cell adhesion glycoprotein vitronectin during Xenopus laevis embryogenesis., Luque ME, Serrano MA, Honoré SM, Mónaco ME, Sánchez SS., Gene Expr Patterns. June 1, 2010; 10 (4-5): 207-13.        

Direct activation of Shroom3 transcription by Pitx proteins drives epithelial morphogenesis in the developing gut., Chung MI, Nascone-Yoder NM, Grover SA, Drysdale TA, Wallingford JB., Development. April 1, 2010; 137 (8): 1339-49.              

Dazap2 is required for FGF-mediated posterior neural patterning, independent of Wnt and Cdx function., Roche DD, Liu KJ, Harland RM, Monsoro-Burq AH., Dev Biol. September 1, 2009; 333 (1): 26-36.                              

Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved., Massé KL, Collins RJ, Bhamra S, Seville RA, Jones EA., Organogenesis. October 1, 2007; 3 (2): 83-92.                                

Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus., Zaghloul NA, Moody SA., Mol Vis. January 26, 2007; 13 86-95.        

Lung specific developmental expression of the Xenopus laevis surfactant protein C and B genes., Hyatt BA, Resnik ER, Johnson NS, Lohr JL, Cornfield DN., Gene Expr Patterns. January 1, 2007; 7 (1-2): 8-14.      

Role for retinoid signaling in left-right asymmetric digestive organ morphogenesis., Lipscomb K, Schmitt C, Sablyak A, Yoder JA, Nascone-Yoder N., Dev Dyn. August 1, 2006; 235 (8): 2266-75.    

PCNS: a novel protocadherin required for cranial neural crest migration and somite morphogenesis in Xenopus., Rangarajan J, Luo T, Sargent TD., Dev Biol. July 1, 2006; 295 (1): 206-18.              

Developmental expression of FoxJ1.2, FoxJ2, and FoxQ1 in Xenopus tropicalis., Choi VM, Harland RM, Khokha MK., Gene Expr Patterns. June 1, 2006; 6 (5): 443-7.      

NGF and IL-1beta are co-localized in the developing nervous system of the frog, Xenopus laevis., Jelaso AM, DeLong C., Int J Dev Neurosci. November 1, 2005; 23 (7): 575-86.

Muscle specification in the Xenopus laevis gastrula-stage embryo., Wunderlich K, Gustin JK, Domingo CR., Dev Dyn. August 1, 2005; 233 (4): 1348-58.

Homer expression in the Xenopus tadpole nervous system., Foa L, Jensen K, Rajan I, Bronson K, Gasperini R, Worley PF, Tu JC, Cline HT., J Comp Neurol. June 20, 2005; 487 (1): 42-53.                    

Xenopus nodal related-1 is indispensable only for left-right axis determination., Toyoizumi R, Ogasawara T, Takeuchi S, Mogi K., Int J Dev Biol. January 1, 2005; 49 (8): 923-38.                

Evolutionarily conserved expression pattern and trans-regulating activity of Xenopus p51/p63., Tomimori Y, Katoh I, Kurata S, Okuyama T, Kamiyama R, Ikawa Y., Biochem Biophys Res Commun. January 9, 2004; 313 (2): 230-6.            

Pancreatic protein disulfide isomerase (XPDIp) is an early marker for the exocrine lineage of the developing pancreas in Xenopus laevis embryos., Afelik S, Chen Y, Pieler T., Gene Expr Patterns. January 1, 2004; 4 (1): 71-6.    

Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF., Small EM, Krieg PA., Dev Biol. September 1, 2003; 261 (1): 116-31.          

Screening for novel pancreatic genes from in vitro-induced pancreas in Xenopus., Sogame A, Hayata T, Asashima M., Dev Growth Differ. April 1, 2003; 45 (2): 143-52.                  

Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development., Clements D, Cameleyre I, Woodland HR., Mech Dev. March 1, 2003; 120 (3): 337-48.            

Cell-autonomous and signal-dependent expression of liver and intestine marker genes in pluripotent precursor cells from Xenopus embryos., Chen Y, Chen Y, Jürgens K, Hollemann T, Claussen M, Ramadori G, Pieler T., Mech Dev. March 1, 2003; 120 (3): 277-88.                      

Experimental conversion of liver to pancreas., Horb ME, Shen CN, Tosh D, Slack JM., Curr Biol. January 21, 2003; 13 (2): 105-15.    

Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro., Furue M, Myoishi Y, Fukui Y, Ariizumi T, Okamoto T, Asashima M., Proc Natl Acad Sci U S A. November 26, 2002; 99 (24): 15474-9.    

Poly(A) binding protein II in Xenopus laevis is expressed in developing brain and pancreas., Kim J, Choi SC, Chang JY, Han JK., Mech Dev. November 1, 2001; 109 (1): 111-4.  

Axis induction by wnt signaling: Target promoter responsiveness regulates competence., Darken RS, Wilson PA., Dev Biol. June 1, 2001; 234 (1): 42-54.            

Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus., Pasqualetti M, Ori M, Nardi I, Rijli FM., Development. December 1, 2000; 127 (24): 5367-78.          

Development of the pancreas in Xenopus laevis., Kelly OG, Melton DA., Dev Dyn. August 1, 2000; 218 (4): 615-27.                  

Responses of young Xenopus laevis tadpoles to light dimming: possible roles for the pineal eye., Jamieson D, Roberts A., J Exp Biol. June 1, 2000; 203 (Pt 12): 1857-67.

Intrinsic bias and lineage restriction in the phenotype determination of dopamine and neuropeptide Y amacrine cells., Moody SA, Chow I, Huang S., J Neurosci. May 1, 2000; 20 (9): 3244-53.                

Confocal imaging of early heart development in Xenopus laevis., Kolker SJ, Tajchman U, Weeks DL., Dev Biol. February 1, 2000; 218 (1): 64-73.              

The Xenopus tadpole gut: fate maps and morphogenetic movements., Chalmers AD, Slack JM., Development. January 1, 2000; 127 (2): 381-92.                  

Dual expression of GABA or serotonin and dopamine in Xenopus amacrine cells is transient and may be regulated by laminar cues., Huang S, Moody SA., Vis Neurosci. January 1, 1998; 15 (5): 969-77.

In vivo footprints are found in the Xenopus 63 kDa keratin gene promoter prior to the appearance of mRNA., Warshawsky D, Miller L., Gene. April 21, 1997; 189 (2): 209-12.

A fork head related multigene family is transcribed in Xenopus laevis embryos., Lef J, Dege P, Scheucher M, Forsbach-Birk V, Clement JH, Knöchel W., Int J Dev Biol. February 1, 1996; 40 (1): 245-53.  

Dynamic and differential Oct-1 expression during early Xenopus embryogenesis: persistence of Oct-1 protein following down-regulation of the RNA., Veenstra GJ, Beumer TL, Peterson-Maduro J, Stegeman BI, Karg HA, van der Vliet PC, Destrée OH., Mech Dev. April 1, 1995; 50 (2-3): 103-17.                            

The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development., Tang TL, Freeman RM, O'Reilly AM, Neel BG, Sokol SY., Cell. February 10, 1995; 80 (3): 473-83.              

XLPOU-60, a Xenopus POU-domain mRNA, is oocyte-specific from very early stages of oogenesis, and localised to presumptive mesoderm and ectoderm in the blastula., Whitfield T, Heasman J, Wylie C., Dev Biol. February 1, 1993; 155 (2): 361-70.                  

Expression of carnosine-like immunoreactivity during retinal development in the clawed frog (Xenopus laevis)., Pognetto MS, Panzanelli P, Fasolo A, Cantino D., Brain Res Dev Brain Res. November 20, 1992; 70 (1): 134-8.

Does lineage determine the dopamine phenotype in the tadpole hypothalamus?: A quantitative analysis., Huang S, Moody SA., J Neurosci. April 1, 1992; 12 (4): 1351-62.                

Development of the olfactory bulb in the clawed frog, Xenopus laevis: a morphological and quantitative analysis., Byrd CA, Burd GD., J Comp Neurol. December 1, 1991; 314 (1): 79-90.

Page(s): 1 2 Next