The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos. , Willsey HR ., Development. June 22, 2020; 147 (21):
The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis. , Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.
Developmental neurogenesis in mouse and Xenopus is impaired in the absence of Nosip. , Hoffmeister M., Dev Biol. September 1, 2017; 429 (1): 200-212.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression. , Shi J., Dev Biol. November 15, 2014; 395 (2): 287-98.
The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. , Iwasaki Y ., Development. October 1, 2014; 141 (19): 3740-51.
Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina. , Mazurier N., PLoS One. March 18, 2014; 9 (3): e92113.
The Prdm13 histone methyltransferase encoding gene is a Ptf1a- Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. , Hanotel J., Dev Biol. February 15, 2014; 386 (2): 340-57.
40LoVe and Samba are involved in Xenopus neural development and functionally distinct from hnRNP AB. , Andreou M., PLoS One. January 1, 2014; 9 (1): e85026.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.
Maturin is a novel protein required for differentiation during primary neurogenesis. , Martinez-De Luna RI ., Dev Biol. December 1, 2013; 384 (1): 26-40.
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. , Ioannou A ., Dev Biol. August 15, 2013; 380 (2): 243-58.
ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis. , Janesick A ., Development. August 1, 2013; 140 (15): 3095-106.
The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling. , Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.
The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. , Parlier D., Dev Biol. January 1, 2013; 373 (1): 39-52.
Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene. , Nicetto D., PLoS Genet. January 1, 2013; 9 (1): e1003188.
Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. , Xu Y ., Cell. December 7, 2012; 151 (6): 1200-13.
pTransgenesis: a cross-species, modular transgenesis resource. , Love NR ., Development. December 1, 2011; 138 (24): 5451-8.
Cloning and spatiotemporal expression of RIC-8 in Xenopus embryogenesis. , Maldonado-Agurto R., Gene Expr Patterns. October 1, 2011; 11 (7): 401-8.
The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. , Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.
Over-expression of atf4 in Xenopus embryos interferes with neurogenesis and eye formation. , Liu JT ., Dongwuxue Yanjiu. October 1, 2011; 32 (5): 485-91.
MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. , Liu K ., Nucleic Acids Res. April 1, 2011; 39 (7): 2869-79.
Yes-associated protein 65 ( YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. , Gee ST ., PLoS One. January 1, 2011; 6 (6): e20309.
The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis. , Perry KJ., Dev Dyn. November 1, 2010; 239 (11): 3024-37.
Aging of Xenopus tropicalis eggs leads to deadenylation of a specific set of maternal mRNAs and loss of developmental potential. , Kosubek A., PLoS One. October 22, 2010; 5 (10): e13532.
Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. , Lee SY., J Biol Chem. September 17, 2010; 285 (38): 29525-34.
MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. , Suzuki M ., Development. July 1, 2010; 137 (14): 2329-39.
The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. , Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.
Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis. , Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.
Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development. , Bury FJ., Dev Dyn. November 1, 2008; 237 (11): 3352-60.
Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 368-80.
Expression cloning in Xenopus identifies RNA-binding proteins as regulators of embryogenesis and Rbmx as necessary for neural and muscle development. , Dichmann DS ., Dev Dyn. July 1, 2008; 237 (7): 1755-66.
Fibroblast growth factor 13 is essential for neural differentiation in Xenopus early embryonic development. , Nishimoto S., J Biol Chem. August 17, 2007; 282 (33): 24255-61.
The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo. , Hou S., Dev Cell. August 1, 2007; 13 (2): 226-41.
BDNF promotes target innervation of Xenopus mandibular trigeminal axons in vivo. , Huang JK ., BMC Dev Biol. May 31, 2007; 7 59.
Ptf1a triggers GABAergic neuronal cell fates in the retina. , Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.
Expression and regulation of Xenopus CRMP-4 in the developing nervous system. , Souopgui J., Int J Dev Biol. January 1, 2007; 51 (4): 339-43.
Enhanced sensitivity and stability in two-color in situ hybridization by means of a novel chromagenic substrate combination. , Hurtado R., Dev Dyn. October 1, 2006; 235 (10): 2811-6.
Timing the generation of distinct retinal cells by homeobox proteins. , Decembrini S., PLoS Biol. September 1, 2006; 4 (9): e272.
Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase ( Xdhcr7) in neural development. , Tadjuidje E ., Dev Dyn. August 1, 2006; 235 (8): 2095-110.
Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning. , Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.
RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development. , Olguín P., J Neurosci. March 8, 2006; 26 (10): 2820-9.
Dystroglycan is required for proper retinal layering. , Lunardi A ., Dev Biol. February 15, 2006; 290 (2): 411-20.
Noelins modulate the timing of neuronal differentiation during development. , Moreno TA., Dev Biol. December 15, 2005; 288 (2): 434-47.
Novel Daple-like protein positively regulates both the Wnt/beta-catenin pathway and the Wnt/ JNK pathway in Xenopus. , Kobayashi H., Mech Dev. October 1, 2005; 122 (10): 1138-53.
Identification of shared transcriptional targets for the proneural bHLH factors Xath5 and XNeuroD. , Logan MA ., Dev Biol. September 15, 2005; 285 (2): 570-83.
Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. , Reversade B ., Development. August 1, 2005; 132 (15): 3381-92.
XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. , Nitta KR., Dev Biol. November 1, 2004; 275 (1): 258-67.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.