Overexpression of a cellular retinoic acid binding protein ( xCRABP) causes anteroposterior defects in developing Xenopus embryos. , Dekker EJ., Development. April 1, 1994; 120 (4): 973-85.
The role of vertical and planar signals during the early steps of neural induction. , Grunz H ., Int J Dev Biol. June 1, 1995; 39 (3): 539-43.
Bone morphogenetic protein 2 in the early development of Xenopus laevis. , Clement JH., Mech Dev. August 1, 1995; 52 (2-3): 357-70.
X- MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation. , Bellefroid EJ ., Cell. December 27, 1996; 87 (7): 1191-202.
A role for Xenopus Gli-type zinc finger proteins in the early embryonic patterning of mesoderm and neuroectoderm. , Marine JC., Mech Dev. May 1, 1997; 63 (2): 211-25.
Differential expression of nucleoside diphosphate kinases (NDPK/NM23) during Xenopus early development. , Ouatas T., Int J Dev Biol. January 1, 1998; 42 (1): 43-52.
The expression of XIF3 in undifferentiated anterior neuroectoderm, but not in primary neurons, is induced by the neuralizing agent noggin. , Goldstone K., Int J Dev Biol. September 1, 1998; 42 (6): 757-62.
Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. , Brown NL ., Development. December 1, 1998; 125 (23): 4821-33.
Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation. , Koyano-Nakagawa N., Development. October 1, 2000; 127 (19): 4203-16.
Identification of NKL, a novel Gli-Kruppel zinc-finger protein that promotes neuronal differentiation. , Lamar E., Development. April 1, 2001; 128 (8): 1335-46.
foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain. , Sullivan SA., Dev Biol. April 15, 2001; 232 (2): 439-57.
The bHLH factors Xath5 and XNeuroD can upregulate the expression of XBrn3d, a POU-homeodomain transcription factor. , Hutcheson DA ., Dev Biol. April 15, 2001; 232 (2): 327-38.
Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell migration. , Alfandari D ., Curr Biol. June 26, 2001; 11 (12): 918-30.
Nrarp is a novel intracellular component of the Notch signaling pathway. , Lamar E., Genes Dev. August 1, 2001; 15 (15): 1885-99.
Metalloproteases and guidance of retinal axons in the developing visual system. , Webber CA., J Neurosci. September 15, 2002; 22 (18): 8091-100.
Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. , Oelgeschläger M ., Dev Cell. February 1, 2003; 4 (2): 219-30.
Depletion of the cell-cycle inhibitor p27( Xic1) impairs neuronal differentiation and increases the number of ElrC(+) progenitor cells in Xenopus tropicalis. , Carruthers S ., Mech Dev. May 1, 2003; 120 (5): 607-16.
XMam1, the Xenopus homologue of mastermind, is essential to primary neurogenesis in Xenopus laevis embryos. , Katada T., Int J Dev Biol. September 1, 2003; 47 (6): 397-404.
Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate. , Andreazzoli M ., Development. November 1, 2003; 130 (21): 5143-54.
XSEB4R, a novel RNA-binding protein involved in retinal cell differentiation downstream of bHLH proneural genes. , Boy S., Development. February 1, 2004; 131 (4): 851-62.
Evolution of neural precursor selection: functional divergence of proneural proteins. , Quan XJ., Development. April 1, 2004; 131 (8): 1679-89.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.
XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. , Nitta KR., Dev Biol. November 1, 2004; 275 (1): 258-67.
Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. , Reversade B ., Development. August 1, 2005; 132 (15): 3381-92.
Identification of shared transcriptional targets for the proneural bHLH factors Xath5 and XNeuroD. , Logan MA ., Dev Biol. September 15, 2005; 285 (2): 570-83.
Novel Daple-like protein positively regulates both the Wnt/beta-catenin pathway and the Wnt/ JNK pathway in Xenopus. , Kobayashi H., Mech Dev. October 1, 2005; 122 (10): 1138-53.
Noelins modulate the timing of neuronal differentiation during development. , Moreno TA., Dev Biol. December 15, 2005; 288 (2): 434-47.
Dystroglycan is required for proper retinal layering. , Lunardi A ., Dev Biol. February 15, 2006; 290 (2): 411-20.
RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development. , Olguín P., J Neurosci. March 8, 2006; 26 (10): 2820-9.
Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning. , Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.
Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase ( Xdhcr7) in neural development. , Tadjuidje E ., Dev Dyn. August 1, 2006; 235 (8): 2095-110.
Timing the generation of distinct retinal cells by homeobox proteins. , Decembrini S., PLoS Biol. September 1, 2006; 4 (9): e272.
Enhanced sensitivity and stability in two-color in situ hybridization by means of a novel chromagenic substrate combination. , Hurtado R., Dev Dyn. October 1, 2006; 235 (10): 2811-6.
Expression and regulation of Xenopus CRMP-4 in the developing nervous system. , Souopgui J., Int J Dev Biol. January 1, 2007; 51 (4): 339-43.
BDNF promotes target innervation of Xenopus mandibular trigeminal axons in vivo. , Huang JK ., BMC Dev Biol. May 31, 2007; 7 59.
Ptf1a triggers GABAergic neuronal cell fates in the retina. , Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.
The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo. , Hou S., Dev Cell. August 1, 2007; 13 (2): 226-41.
Fibroblast growth factor 13 is essential for neural differentiation in Xenopus early embryonic development. , Nishimoto S., J Biol Chem. August 17, 2007; 282 (33): 24255-61.
Expression cloning in Xenopus identifies RNA-binding proteins as regulators of embryogenesis and Rbmx as necessary for neural and muscle development. , Dichmann DS ., Dev Dyn. July 1, 2008; 237 (7): 1755-66.
Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 368-80.
Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development. , Bury FJ., Dev Dyn. November 1, 2008; 237 (11): 3352-60.
Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis. , Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.
The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. , Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.
MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. , Suzuki M ., Development. July 1, 2010; 137 (14): 2329-39.
Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. , Lee SY., J Biol Chem. September 17, 2010; 285 (38): 29525-34.
Aging of Xenopus tropicalis eggs leads to deadenylation of a specific set of maternal mRNAs and loss of developmental potential. , Kosubek A., PLoS One. October 22, 2010; 5 (10): e13532.
The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis. , Perry KJ., Dev Dyn. November 1, 2010; 239 (11): 3024-37.
Yes-associated protein 65 ( YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. , Gee ST ., PLoS One. January 1, 2011; 6 (6): e20309.
MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. , Liu K ., Nucleic Acids Res. April 1, 2011; 39 (7): 2869-79.
Cloning and spatiotemporal expression of RIC-8 in Xenopus embryogenesis. , Maldonado-Agurto R., Gene Expr Patterns. October 1, 2011; 11 (7): 401-8.