Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14672) Expression Attributions Wiki
XB-ANAT-213

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Cornifelin expression during Xenopus laevis metamorphosis and in response to spinal cord injury., Torruella-Gonzalez S., Gene Expr Patterns. March 1, 2022; 43 119234.              


Algae on the brain in bioengineering., Kerney R., Trends Biotechnol. March 1, 2022; 40 (3): 259-260.


CRISPR/Cas9-Mediated Models of Retinitis Pigmentosa Reveal Differential Proliferative Response of Müller Cells between Xenopus laevis and Xenopus tropicalis., Parain K., Cells. February 25, 2022; 11 (5):                   


Topographic map formation and the effects of NMDA receptor blockade in the developing visual system., Li VJ., Proc Natl Acad Sci U S A. February 22, 2022; 119 (8):                                   


Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders., Martin M., Science. February 18, 2022; 375 (6582): eabm4459.


From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures., Caporale N., Science. February 18, 2022; 375 (6582): eabe8244.  


Development and characterization of functional antibodies targeting NMDA receptors., Tajima N., Nat Commun. February 17, 2022; 13 (1): 923.


AsKC11, a Kunitz Peptide from Anemonia sulcata, Is a Novel Activator of G Protein-Coupled Inward-Rectifier Potassium Channels., An D., Mar Drugs. February 15, 2022; 20 (2):


Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration., Suzuki S., Sci Rep. February 3, 2022; 12 (1): 1903.                      


Imaging Structural and Functional Dynamics in Xenopus Neurons., Cline HT., Cold Spring Harb Protoc. February 1, 2022; 2022 (2):


The role of Xenopus developmental biology in unraveling Wnt signalling and antero-posterior axis formation., Niehrs C., Dev Biol. February 1, 2022; 482 1-6.


A novel ion conducting route besides the central pore in an inherited mutant of G-protein-gated inwardly rectifying K+ channel., Chen IS., J Physiol. February 1, 2022; 600 (3): 603-622.


Cannabinoid Receptor Type 1 regulates growth cone filopodia and axon dispersion in the optic tract of Xenopus laevis tadpoles., Elul T., Eur J Neurosci. February 1, 2022; 55 (4): 989-1001.


Zic5 stabilizes Gli3 via a non-transcriptional mechanism during retinal development., Sun J., Cell Rep. February 1, 2022; 38 (5): 110312.                                          


Proteomic screen reveals diverse protein transport between connected neurons in the visual system., Schiapparelli LM., Cell Rep. January 25, 2022; 38 (4): 110287.                                  


Conservation of locomotion-induced oculomotor activity through evolution in mammals., França de Barros F., Curr Biol. January 24, 2022; 32 (2): 453-461.e4.        


Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network., Wu Y., Elife. January 20, 2022; 11                             


Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis., Delhermite J., PLoS Genet. January 18, 2022; 18 (1): e1010012.                                                              


Bulk Dye Loading for In Vivo Calcium Imaging of Visual Responses in Populations of Xenopus Tectal Neurons., Hogg PW., Cold Spring Harb Protoc. January 4, 2022; 2022 (1):


Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles., Ta AC., G3 (Bethesda). January 4, 2022; 12 (1):               


Developmental and Injury-induced Changes in DNA Methylation in Regenerative versus Non-regenerative Regions of the Vertebrate Central Nervous System., Reverdatto S., BMC Genomics. January 4, 2022; 23 (1): 2.                      


Analysis of the Expression Pattern of Cajal-Retzius Cell Markers in the Xenopus laevis Forebrain., Jiménez S., Brain Behav Evol. January 1, 2022; 96 (4-6): 263-282.


Sperm associated antigen 7 is activated by T3 during Xenopus tropicalis metamorphosis via a thyroid hormone response element within the first intron., Fu L., Dev Growth Differ. January 1, 2022; 64 (1): 48-58.


Assessing potentiation of the (α4)3(β2)2 nicotinic acetylcholine receptor by the allosteric agonist CMPI., Deba F., J Biol Chem. January 1, 2022; 298 (1): 101455.


Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly., Gur M., Front Cell Dev Biol. January 1, 2022; 10 844619.                        


Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channels., Abdullaeva OS., Adv Sci (Weinh). January 1, 2022; 9 (3): e2103132.


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Patterns of tubb2b Promoter-Driven Fluorescence in the Forebrain of Larval Xenopus laevis., Daume D., Front Neuroanat. January 1, 2022; 16 914281.          


Apamin structure and pharmacology revisited., Kuzmenkov AI., Front Pharmacol. January 1, 2022; 13 977440.          


Epigenetic regulation of GABAergic differentiation in the developing brain., Gao J., Front Cell Neurosci. January 1, 2022; 16 988732.            


Voltage dependence of the cannabinoid CB1 receptor., Goldberger E., Front Pharmacol. January 1, 2022; 13 1022275.                  


Abnormal left-right organizer and laterality defects in Xenopus embryos after formin inhibitor SMIFH2 treatment., Petri N., PLoS One. January 1, 2022; 17 (11): e0275164.        


Role of locomotor efference copy in vertebrate gaze stabilization., Straka H., Front Neural Circuits. January 1, 2022; 16 1040070.            


Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosophila., Thakkar N., Front Physiol. January 1, 2022; 13 1062632.                


An early midbrain sensorimotor pathway is involved in the timely initiation and direction of swimming in the hatchling Xenopus laevis tadpole., Larbi MC., Front Neural Circuits. January 1, 2022; 16 1027831.                


Evi5 is required for Xenopus limb and tail regeneration., Yang L., Front Cell Dev Biol. January 1, 2022; 10 1027666.                                


Single-Cell Mass Spectrometry of Metabolites and Proteins for Systems and Functional Biology., Portero EP., Neuromethods. January 1, 2022; 184 87-114.


Tetrabromobisphenol A Disturbs Brain Development in Both Thyroid Hormone-Dependent and -Independent Manners in Xenopus laevis., Dong M., Molecules. December 31, 2021; 27 (1):


Molecular mechanisms underlying enhanced hemichannel function of a cataract-associated Cx50 mutant., Tong JJ., Biophys J. December 21, 2021; 120 (24): 5644-5656.


CK2 Phosphorylation Is Required for Regulation of Syntaxin 1A Activity in Ca2+-Triggered Release in Neuroendocrine Cells., Barak-Broner N., Int J Mol Sci. December 17, 2021; 22 (24):   


Pharmacological characterization of a novel negative allosteric modulator of NMDA receptors, UBP792., Sapkota K., Neuropharmacology. December 15, 2021; 201 108818.


Juvenile African Clawed Frogs (Xenopus laevis) Express Growth, Metamorphosis, Mortality, Gene Expression, and Metabolic Changes When Exposed to Thiamethoxam and Clothianidin., Jenkins JA., Int J Mol Sci. December 10, 2021; 22 (24):                     


Eya1 protein distribution during embryonic development of Xenopus laevis., Almasoudi SH., Gene Expr Patterns. December 1, 2021; 42 119213.                                        


Distinct type II opsins in the eye decode light properties for background adaptation and behavioural background preference., Bertolesi GE., Mol Ecol. December 1, 2021; 30 (24): 6659-6676.


Galloway-Mowat syndrome: New insights from bioinformatics and expression during Xenopus embryogenesis., Treimer E., Gene Expr Patterns. December 1, 2021; 42 119215.                      


Generation of a new six1-null line in Xenopus tropicalis for study of development and congenital disease., Coppenrath K., Genesis. December 1, 2021; 59 (12): e23453.        


A missense mutation converts the Na+,K+-ATPase into an ion channel and causes therapy-resistant epilepsy., Ygberg S., J Biol Chem. December 1, 2021; 297 (6): 101355.  


Clustering of Aromatic Residues in Prion-like Domains Can Tune the Formation, State, and Organization of Biomolecular Condensates., Holehouse AS., Biochemistry. November 30, 2021; 60 (47): 3566-3581.                  


Gene Structure Analysis of Chemokines and Their Receptors in Allotetraploid Frog, Xenopus laevis., Fukui A., Front Genet. November 25, 2021; 12 787979.            


Identification of ZBTB26 as a Novel Risk Factor for Congenital Hypothyroidism., Vick P., Genes (Basel). November 24, 2021; 12 (12):                     

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???