Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1574) Expression Attributions Wiki
XB-ANAT-226

Papers associated with optic vesicle (and tecta.2)

Limit to papers also referencing gene:
Show all optic vesicle papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms., Blackiston DJ., Neurotherapeutics. January 1, 2015; 12 (1): 170-84.            


Global hyper-synchronous spontaneous activity in the developing optic tectum., Imaizumi K., Sci Rep. January 1, 2013; 3 1552.            


Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis., Higenell V., Dev Neurobiol. April 1, 2012; 72 (4): 547-63.              


Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation., Rentería RC., J Neurosci. August 15, 1999; 19 (16): 7066-76.          


Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study., Titmus MJ., Neuroscience. January 1, 1999; 91 (2): 753-69.


Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration., Zhao Y., J Neurobiol. November 20, 1997; 33 (6): 811-24.                  


Xenopus Brn-3.0, a POU-domain gene expressed in the developing retina and tectum. Not regulated by innervation., Hirsch N., Invest Ophthalmol Vis Sci. April 1, 1997; 38 (5): 960-9.


The contribution of protein kinases to plastic events in the superior colliculus., McCrossan D., Prog Neuropsychopharmacol Biol Psychiatry. April 1, 1997; 21 (3): 487-505.


Polysialylated neural cell adhesion molecule and plasticity of ipsilateral connections in Xenopus tectum., Williams DK., Neuroscience. January 1, 1996; 70 (1): 277-85.


Absence of topography in precociously innervated tecta., Chien CB., Development. August 1, 1995; 121 (8): 2621-31.


The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis., Zhao Y., J Neurosci. June 1, 1995; 15 (6): 4629-40.                      


Ultrastructure of the crossed isthmotectal projection in Xenopus frogs., Udin SB., J Comp Neurol. February 8, 1990; 292 (2): 246-54.


The induction of an anomalous ipsilateral retinotectal projection in Xenopus laevis., Taylor JS., Anat Embryol (Berl). January 1, 1990; 181 (4): 393-404.


Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. I. Normal maturational changes in response to changing binocular geometry., Grant S., Exp Brain Res. January 1, 1989; 75 (1): 99-116.


Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies., Takagi S., Dev Biol. July 1, 1987; 122 (1): 90-100.                    


Optic fibers follow aberrant pathways from rotated eyes in Xenopus laevis., Grant P., J Comp Neurol. August 15, 1986; 250 (3): 364-76.


Normal maturation involves systematic changes in binocular visual connections in Xenopus laevis., Grant S., Nature. July 17, 1986; 322 (6076): 258-61.


A species difference between Rana and Xenopus in the occurrence of intertectal neuronal plasticity., Kennard C., Neurosci Lett. August 5, 1985; 58 (3): 365-70.


Pathways of Xenopus optic fibres regenerating from normal and compound eyes under various conditions., Gaze RM., J Embryol Exp Morphol. February 1, 1983; 73 17-38.


Abnormal visual input leads to development of abnormal axon trajectories in frogs., Udin SB., Nature. January 27, 1983; 301 (5898): 336-8.


Retinotectal map formation in dually innervated tecta: a regeneration study in Xenopus with one compound eye following bilateral optic nerve section., Straznicky C., J Comp Neurol. April 1, 1982; 206 (2): 119-30.


Interactions between compound and normal eye projections in dually innervated tectum: a study of optic nerve regeneration in Xenopus., Straznicky C., J Embryol Exp Morphol. December 1, 1981; 66 159-74.


Mapping retinal projections from double nasal and double temporal compound eyes to dually innervated tectum in Xenopus., Straznicky C., Dev Biol. April 1, 1981; 227 (2): 139-52.


Spreading of hemiretinal projections in the ipsilateral tectum following unilateral enucleation: a study of optic nerve regeneration in Xenopus with one compound eye., Straznicky C., J Embryol Exp Morphol. February 1, 1981; 61 259-76.


Regeneration of optic nerve fibres from a compound eye to both tecta in Xenopus: evidence relating to the state of specification of the eye and the tectum., Gaze RM., J Embryol Exp Morphol. December 1, 1980; 60 125-40.


Segregation of optic fibre projections into eye-specific bands in dually innervated tecta in Xenopus., Straznicky C., Neurosci Lett. September 1, 1980; 19 (2): 131-6.


Regeneration of an abnormal ipsilateral visuotectal projection in Xenopus is delayed by the presence of optic fibres from the other eye., Straznicky C., J Embryol Exp Morphol. June 1, 1980; 57 129-41.


Ultrastructural study of degeneration and regeneration in the amphibian tectum., Ostberg A., Dev Biol. June 8, 1979; 168 (3): 441-55.


Selection of appropriate medial branch of the optic tract by fibres of ventral retinal origin during development and in regeneration: an autoradiographic study in Xenopus., Straznicky C., J Embryol Exp Morphol. April 1, 1979; 50 253-67.


Factors determining decussation at the optic chiasma by developing retinotectal fibres in Xenopus., Beazley LD., Exp Brain Res. November 14, 1975; 23 (5): 491-504.


Development of intertectal neuronal connections in xenopus: the effects of contralateral transposition of the eye and of eye removal., Beazley LD., Exp Brain Res. November 14, 1975; 23 (5): 505-18.

???pagination.result.page??? 1