Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1230) Expression Attributions Wiki
XB-ANAT-3515

Papers associated with myocyte (and ache)

Limit to papers also referencing gene:
Show all myocyte papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Axial-skeletal defects caused by Carbaryl in Xenopus laevis embryos., Bacchetta R., Sci Total Environ. March 15, 2008; 392 (1): 110-8.


Exposure to the organophosphorus pesticide chlorpyrifos inhibits acetylcholinesterase activity and affects muscular integrity in Xenopus laevis larvae., Colombo A., Chemosphere. December 1, 2005; 61 (11): 1665-71.


Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development., Bonfanti P., Aquat Toxicol. December 10, 2004; 70 (3): 189-200.


PRiMA: the membrane anchor of acetylcholinesterase in the brain., Perrier AL., Neuron. January 17, 2002; 33 (2): 275-85.


Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan., Peng HB., J Cell Biol. May 17, 1999; 145 (4): 911-21.                  


Former neuritic pathways containing endogenous neural agrin have high synaptogenic activity., Cohen MW., Dev Biol. February 1, 1995; 167 (2): 458-68.              


Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos., Ben Aziz-Aloya R., Proc Natl Acad Sci U S A. March 15, 1993; 90 (6): 2471-5.        


Development of acetylcholinesterase induced by basic polypeptide-coated latex beads in cultured Xenopus muscle cells., Peng HB., Dev Biol. June 1, 1988; 127 (2): 452-5.


Elimination of preexistent acetylcholine receptor clusters induced by the formation of new clusters in the absence of nerve., Peng HB., J Neurosci. February 1, 1986; 6 (2): 581-9.


Formation of the vertebrate neuromuscular junction., Moody-Corbett F., Dev Biol (N Y 1985). January 1, 1986; 2 605-35.


Cellular and secreted forms of acetylcholinesterase in mouse muscle cultures., Rubin LL., J Neurochem. December 1, 1985; 45 (6): 1932-40.


Molecular forms of acetylcholinesterase in Xenopus muscle., Lappin RI., Dev Biol. August 1, 1985; 110 (2): 269-74.


Membrane-related specializations associated with acetylcholine receptor aggregates induced by electric fields., Luther PW., J Cell Biol. January 1, 1985; 100 (1): 235-44.


Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction., Anderson MJ., J Cell Biol. November 1, 1984; 99 (5): 1769-84.


Two types of miniature endplate potentials in Xenopus nerve-muscle cultures., Kidokoro Y., Neurosci Res. June 1, 1984; 1 (3): 157-70.


Participation of calcium and calmodulin in the formation of acetylcholine receptor clusters., Peng HB., J Cell Biol. February 1, 1984; 98 (2): 550-7.


Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers., Anderson MJ., J Cell Biol. November 1, 1983; 97 (5 Pt 1): 1396-411.


Rapid lateral diffusion of extrajunctional acetylcholine receptors in the developing muscle membrane of Xenopus tadpole., Young SH., J Neurosci. January 1, 1983; 3 (1): 225-31.

???pagination.result.page??? 1