Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3352) Expression Attributions Wiki
XB-ANAT-302

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Successful reconstitution of the non-regenerating adult telencephalon by cell transplantation in Xenopus laevis., Yoshino J., Dev Growth Differ. December 1, 2004; 46 (6): 523-34.          


Identification and developmental expression of Xenopus paraxis., Tseng HT., Int J Dev Biol. December 1, 2004; 48 (10): 1155-8.              


X-epilectin: a novel epidermal fucolectin regulated by BMP signalling., Massé K., Int J Dev Biol. December 1, 2004; 48 (10): 1119-29.          


The developmental expression of two Xenopus laevis steel homologues, Xsl-1 and Xsl-2., Martin BL., Gene Expr Patterns. December 1, 2004; 5 (2): 239-43.    


Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod., Fletcher RB., Gene Expr Patterns. December 1, 2004; 5 (2): 225-30.                              


The FoxO-subclass in Xenopus laevis development., Pohl BS., Gene Expr Patterns. December 1, 2004; 5 (2): 187-92.    


Regional requirements for Dishevelled signaling during Xenopus gastrulation: separable effects on blastopore closure, mesendoderm internalization and archenteron formation., Ewald AJ., Development. December 1, 2004; 131 (24): 6195-209.                            


EDEN-BP-dependent post-transcriptional regulation of gene expression in Xenopus somitic segmentation., Gautier-Courteille C, Gautier-Courteille C., Development. December 1, 2004; 131 (24): 6107-17.                  


Sequences downstream of the bHLH domain of the Xenopus hairy-related transcription factor-1 act as an extended dimerization domain that contributes to the selection of the partners., Taelman V., Dev Biol. December 1, 2004; 276 (1): 47-63.                          


Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor., Brugmann SA., Development. December 1, 2004; 131 (23): 5871-81.                    


Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis., Davidson LA., Dev Dyn. December 1, 2004; 231 (4): 888-95.      


The homeodomain-containing transcription factor X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development., Bayramov AV., Mech Dev. December 1, 2004; 121 (12): 1425-41.  


Myogenic regulatory factors: redundant or specific functions? Lessons from Xenopus., Chanoine C., Dev Dyn. December 1, 2004; 231 (4): 662-70.  


Identification of Xenopus cyclin-dependent kinase inhibitors, p16Xic2 and p17Xic3., Daniels M., Gene. November 10, 2004; 342 (1): 41-7.                


Localization and connectivity of the lateral amygdala in anuran amphibians., Moreno N., J Comp Neurol. November 8, 2004; 479 (2): 130-48.                  


Identification and characterisation of the posteriorly-expressed Xenopus neurotrophin receptor homolog genes fullback and fullback-like., Bromley E., Gene Expr Patterns. November 1, 2004; 5 (1): 135-40.            


Embryonic expression of pre-initiation DNA replication factors in Xenopus laevis., Walter BE., Gene Expr Patterns. November 1, 2004; 5 (1): 81-9.                                


Cloning and characterisation of the immunophilin X-CypA in Xenopus laevis., Massé K., Gene Expr Patterns. November 1, 2004; 5 (1): 51-60.      


Identification of the mammalian Not gene via a phylogenomic approach., Plouhinec JL., Gene Expr Patterns. November 1, 2004; 5 (1): 11-22.    


Negative regulation of Smad2 by PIASy is required for proper Xenopus mesoderm formation., Daniels M., Development. November 1, 2004; 131 (22): 5613-26.                                


XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling., Nitta KR., Dev Biol. November 1, 2004; 275 (1): 258-67.                    


Early requirement of the transcriptional activator Sox9 for neural crest specification in Xenopus., Lee YH, Lee YH., Dev Biol. November 1, 2004; 275 (1): 93-103.          


Induction of the neural crest and the opportunities of life on the edge., Huang X., Dev Biol. November 1, 2004; 275 (1): 1-11.


A vertebrate crossveinless 2 homologue modulates BMP activity and neural crest cell migration., Coles E., Development. November 1, 2004; 131 (21): 5309-17.      


Analysis of the Tcf-3 promoter during early development of Xenopus., Spieker N., Dev Dyn. November 1, 2004; 231 (3): 510-7.      


Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis., Nelson KK., BMC Dev Biol. October 8, 2004; 4 13.                  


Identification and characterization of Xenopus OMP25., Inui M., Dev Growth Differ. October 1, 2004; 46 (5): 405-12.          


R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis., Kazanskaya O., Dev Cell. October 1, 2004; 7 (4): 525-34.                          


Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B., Piepenburg O., Development. October 1, 2004; 131 (20): 4977-86.              


Autoregulation of canonical Wnt signaling controls midbrain development., Kunz M., Dev Biol. September 15, 2004; 273 (2): 390-401.          


A Xenopus tribbles orthologue is required for the progression of mitosis and for development of the nervous system., Saka Y., Dev Biol. September 15, 2004; 273 (2): 210-25.                      


Distribution of the mRNAs encoding the thyrotropin-releasing hormone (TRH) precursor and three TRH receptors in the brain and pituitary of Xenopus laevis: effect of background color adaptation on TRH and TRH receptor gene expression., Bidaud I., J Comp Neurol. September 6, 2004; 477 (1): 11-28.                      


Tsukushi functions as an organizer inducer by inhibition of BMP activity in cooperation with chordin., Ohta K., Dev Cell. September 1, 2004; 7 (3): 347-358.        


Matrix metalloproteinase genes in Xenopus development., Harrison M., Dev Dyn. September 1, 2004; 231 (1): 214-20.      


Lateral line-mediated rheotactic behavior in tadpoles of the African clawed frog (Xenopus laevis)., Simmons AM., J Comp Physiol A Neuroethol Sens Neural Behav Physiol. September 1, 2004; 190 (9): 747-58.


Evidence for overlapping, but not identical, protein machineries operating in vegetal RNA localization along early and late pathways in Xenopus oocytes., Claussen M., Development. September 1, 2004; 131 (17): 4263-73.            


Characterization of Xenopus Phox2a and Phox2b defines expression domains within the embryonic nervous system and early heart field., Talikka M., Gene Expr Patterns. September 1, 2004; 4 (5): 601-7.      


The role of Xenopus frizzled-8 in pronephric development., Satow R., Biochem Biophys Res Commun. August 20, 2004; 321 (2): 487-94.          


p120 catenin is required for morphogenetic movements involved in the formation of the eyes and the craniofacial skeleton in Xenopus., Ciesiolka M., J Cell Sci. August 15, 2004; 117 (Pt 18): 4325-39.                      


Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor., Chung HA., Genes Cells. August 1, 2004; 9 (8): 749-61.                            


XSENP1, a novel sumo-specific protease in Xenopus, inhibits normal head formation by down-regulation of Wnt/beta-catenin signalling., Yukita A., Genes Cells. August 1, 2004; 9 (8): 723-36.              


Expression patterns of Xenopus FGF receptor-like 1/nou-darake in early Xenopus development resemble those of planarian nou-darake and Xenopus FGF8., Hayashi S., Dev Dyn. August 1, 2004; 230 (4): 700-7.        


Early regeneration genes: Building a molecular profile for shared expression in cornea-lens transdifferentiation and hindlimb regeneration in Xenopus laevis., Wolfe AD., Dev Dyn. August 1, 2004; 230 (4): 615-29.        


Cardiac neural crest ablation alters Id2 gene expression in the developing heart., Martinsen BJ., Dev Biol. August 1, 2004; 272 (1): 176-90.          


Function and regulation of FoxF1 during Xenopus gut development., Tseng HT., Development. August 1, 2004; 131 (15): 3637-47.                


Afferent synaptic transmission in a hair cell organ: pharmacological and physiological analysis of the role of the extended refractory period., Dawkins R., J Neurophysiol. August 1, 2004; 92 (2): 1105-15.


Modeling of basolateral ATP release induced by hypotonic treatment in A6 cells., Gheorghiu M., Eur Biophys J. August 1, 2004; 33 (5): 412-20.


Molecular anatomy of placode development in Xenopus laevis., Schlosser G., Dev Biol. July 15, 2004; 271 (2): 439-66.                          


Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules., Zhou X, Zhou X., Dev Biol. July 15, 2004; 271 (2): 322-38.                                  


Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods., Brox A., J Comp Neurol. July 5, 2004; 474 (4): 562-77.                

???pagination.result.page??? ???pagination.result.prev??? 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ???pagination.result.next???