Results 1 - 22 of 22 results
Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. , Ossipova O., Development. September 11, 2020; 147 (17):
Rspo2 antagonizes FGF signaling during vertebrate mesoderm formation and patterning. , Reis AH., Development. May 27, 2020; 147 (10):
Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway. , Ossipova O., Development. January 1, 2020;
Transcriptomics of dorso- ventral axis determination in Xenopus tropicalis. , Monteiro RS ., Dev Biol. July 15, 2018; 439 (2): 69-79.
Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. , Gentsch GE ., Dev Cell. March 12, 2018; 44 (5): 597-610.e10.
RARβ2 is required for vertebrate somitogenesis. , Janesick A ., Development. June 1, 2017; 144 (11): 1997-2008.
FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step epithelial to mesenchymal transition. , Goto H., Development. April 15, 2017; 144 (8): 1412-1424.
Nodal signalling in Xenopus: the role of Xnr5 in left/ right asymmetry and heart development. , Tadjuidje E ., Open Biol. August 1, 2016; 6 (8):
NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling. , Zhang Y ., Dev Biol. August 1, 2014; 392 (1): 15-25.
Active repression by RARγ signaling is required for vertebrate axial elongation. , Janesick A ., Development. June 1, 2014; 141 (11): 2260-70.
A gene regulation network controlled by Celf1 protein- rbpj mRNA interaction in Xenopus somite segmentation. , Cibois M., Biol Open. August 21, 2013; 2 (10): 1078-83.
Early transcriptional targets of MyoD link myogenesis and somitogenesis. , Maguire RJ ., Dev Biol. November 15, 2012; 371 (2): 256-68.
Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway. , Takahashi C ., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.
Xenopus Rnd1 and Rnd3 GTP-binding proteins are expressed under the control of segmentation clock and required for somite formation. , Goda T., Dev Dyn. November 1, 2009; 238 (11): 2867-76.
The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. , Dammermann A., Genes Dev. September 1, 2009; 23 (17): 2046-59.
The role of FoxC1 in early Xenopus development. , Cha JY., Dev Dyn. October 1, 2007; 236 (10): 2731-41.
Wnt/beta-catenin signaling controls Mespo expression to regulate segmentation during Xenopus somitogenesis. , Wang J ., Dev Biol. April 15, 2007; 304 (2): 836-47.
Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos. , Nagano T., Development. December 1, 2006; 133 (23): 4643-54.
Cloning and analyzing of Xenopus Mespo promoter in retinoic acid regulated Mespo expression. , Wang JH ., Acta Biochim Biophys Sin (Shanghai). November 1, 2006; 38 (11): 759-64.
The protocadherin PAPC establishes segmental boundaries during somitogenesis in xenopus embryos. , Kim SH., Curr Biol. July 13, 2000; 10 (14): 821-30.
The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes. , Yoon JK., Dev Biol. June 15, 2000; 222 (2): 376-91.
Mespo: a novel basic helix-loop-helix gene expressed in the presomitic mesoderm and posterior tailbud of Xenopus embryos. , Joseph EM ., Mech Dev. April 1, 1999; 82 (1-2): 191-4.