Results 1 - 50 of 69 results
The cytokine FAM3B/PANDER is an FGFR ligand that promotes posterior development in Xenopus. , Zhang F., Proc Natl Acad Sci U S A. May 18, 2021; 118 (20):
Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos. , Virgirinia RP., Dev Growth Differ. August 1, 2019; 61 (6): 365-377.
What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis? , Durston AJ ., Genesis. July 1, 2019; 57 (7-8): e23296.
Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis. , Jin L., Stem Cells. September 1, 2018; 36 (9): 1368-1379.
PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation. , Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.
The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus. , Zhu X., Mech Dev. October 1, 2017; 147 28-36.
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
NF2/ Merlin is required for the axial pattern formation in the Xenopus laevis embryo. , Zhu X., Mech Dev. November 1, 2015; 138 Pt 3 305-12.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein. , Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.
Regulation of primitive hematopoiesis by class I histone deacetylases. , Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.
Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. , Reis AH., Dev Biol. May 15, 2012; 365 (2): 350-62.
The cytoplasmic tyrosine kinase Arg regulates gastrulation via control of actin organization. , Bonacci G., Dev Biol. April 1, 2012; 364 (1): 42-55.
Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/ β-catenin signaling pathway. , Fujimi TJ ., Dev Biol. January 15, 2012; 361 (2): 220-31.
Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. , Scerbo P ., PLoS One. January 1, 2012; 7 (5): e36855.
The forkhead transcription factor FoxB1 regulates the dorsal- ventral and anterior- posterior patterning of the ectoderm during early Xenopus embryogenesis. , Takebayashi-Suzuki K., Dev Biol. December 1, 2011; 360 (1): 11-29.
Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. , Lee SY., J Biol Chem. September 17, 2010; 285 (38): 29525-34.
The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos. , Maczkowiak F., Dev Biol. April 15, 2010; 340 (2): 381-96.
The RNA-binding protein Seb4/ RBM24 is a direct target of MyoD and is required for myogenesis during Xenopus early development. , Li HY., Mech Dev. January 1, 2010; 127 (5-6): 281-91.
Dazap2 is required for FGF-mediated posterior neural patterning, independent of Wnt and Cdx function. , Roche DD., Dev Biol. September 1, 2009; 333 (1): 26-36.
Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis. , Faas L., Dev Dyn. April 1, 2009; 238 (4): 835-52.
Hairy2- Id3 interactions play an essential role in Xenopus neural crest progenitor specification. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.
The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. , Sander V., EMBO J. June 20, 2007; 26 (12): 2955-65.
Xenopus Teashirt1 regulates posterior identity in brain and cranial neural crest. , Koebernick K., Dev Biol. October 1, 2006; 298 (1): 312-26.
Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning. , Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.
FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. , Fletcher RB., Development. May 1, 2006; 133 (9): 1703-14.
Interaction between X- Delta-2 and Hox genes regulates segmentation and patterning of the anteroposterior axis. , Peres JN ., Mech Dev. April 1, 2006; 123 (4): 321-33.
Twisted gastrulation is required for forebrain specification and cooperates with Chordin to inhibit BMP signaling during X. tropicalis gastrulation. , Wills A ., Dev Biol. January 1, 2006; 289 (1): 166-78.
Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning. , Houston DW ., Development. November 1, 2005; 132 (21): 4845-55.
Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. , Reversade B ., Development. August 1, 2005; 132 (15): 3381-92.
Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects. , McNulty CL ., Development. June 1, 2005; 132 (12): 2861-71.
Conserved cross-interactions in Drosophila and Xenopus between Ras/ MAPK signaling and the dual-specificity phosphatase MKP3. , Gómez AR., Dev Dyn. March 1, 2005; 232 (3): 695-708.
Cloning and characterisation of the immunophilin X- CypA in Xenopus laevis. , Massé K ., Gene Expr Patterns. November 1, 2004; 5 (1): 51-60.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.
Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. , Moore KB ., Dev Cell. January 1, 2004; 6 (1): 55-67.
FLASH, a component of the FAS-CAPSASE8 apoptotic pathway, is directly regulated by Hoxb4 in the notochord. , Morgan R ., Dev Biol. January 1, 2004; 265 (1): 105-12.
Twisted gastrulation loss-of-function analyses support its role as a BMP inhibitor during early Xenopus embryogenesis. , Blitz IL ., Development. October 1, 2003; 130 (20): 4975-88.
Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos. , Galli A., Development. October 1, 2003; 130 (20): 4919-29.
Evidence for antagonism of BMP-4 signals by MAP kinase during Xenopus axis determination and neural specification. , Sater AK ., Differentiation. September 1, 2003; 71 (7): 434-44.
Wise, a context-dependent activator and inhibitor of Wnt signalling. , Itasaki N., Development. September 1, 2003; 130 (18): 4295-305.
Yin Yang 1, a vertebrate polycomb group gene, regulates antero- posterior neural patterning. , Kwon HJ., Biochem Biophys Res Commun. July 11, 2003; 306 (4): 1008-13.
Isolation and growth factor inducibility of the Xenopus laevis Lmx1b gene. , Haldin CE ., Int J Dev Biol. May 1, 2003; 47 (4): 253-62.
Flamingo, a cadherin-type receptor involved in the Drosophila planar polarity pathway, can block signaling via the canonical wnt pathway in Xenopus laevis. , Morgan R ., Int J Dev Biol. May 1, 2003; 47 (4): 245-52.
Cloning and developmental expression of Baf57 in Xenopus laevis. , Domingos PM ., Mech Dev. August 1, 2002; 116 (1-2): 177-81.
The latent- TGFbeta-binding-protein-1 (LTBP-1) is expressed in the organizer and regulates nodal and activin signaling. , Altmann CR ., Dev Biol. August 1, 2002; 248 (1): 118-27.
Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. , Zohn IE., Dev Biol. November 1, 2001; 239 (1): 118-31.
Siamois functions in the early blastula to induce Spemann''s organiser. , Kodjabachian L ., Mech Dev. October 1, 2001; 108 (1-2): 71-9.
The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. , Reissmann E., Genes Dev. August 1, 2001; 15 (15): 2010-22.
Different activities of the frizzled-related proteins frzb2 and sizzled2 during Xenopus anteroposterior patterning. , Bradley L., Dev Biol. November 1, 2000; 227 (1): 118-32.
Xenopus embryonic E2F is required for the formation of ventral and posterior cell fates during early embryogenesis. , Suzuki A , Suzuki A ., Mol Cell. February 1, 2000; 5 (2): 217-29.