Results 1 - 50 of 55 results
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Natural size variation among embryos leads to the corresponding scaling in gene expression. , Leibovich A., Dev Biol. June 15, 2020; 462 (2): 165-179.
Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos. , Lichtig H., Front Physiol. February 18, 2020; 11 75.
Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center. , Castro Colabianchi AM., Development. July 17, 2018; 145 (14):
Tbx2 is required for the suppression of mesendoderm during early Xenopus development. , Teegala S ., Dev Dyn. July 1, 2018; 247 (7): 903-913.
Xenopus Hybrids Provide Insight Into Cell and Organism Size Control. , Gibeaux R., Front Physiol. February 5, 2018; 9 1758.
Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2. , Scerbo P ., Elife. June 27, 2017; 6
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M., Dev Biol. June 15, 2017; 426 (2): 301-324.
The MLL/ Setd1b methyltransferase is required for the Spemann''s organizer gene activation in Xenopus. , Lin H., Mech Dev. November 1, 2016; 142 1-9.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT ., Development. December 1, 2014; 141 (23): 4537-47.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.
Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. , Kirmizitas A., Dev Biol. August 15, 2014; 392 (2): 358-67.
Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. , Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
Regulation of primitive hematopoiesis by class I histone deacetylases. , Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.
Microarray-based identification of Pitx3 targets during Xenopus embryogenesis. , Hooker L., Dev Dyn. September 1, 2012; 241 (9): 1487-505.
A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. , Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.
Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. , Scerbo P ., PLoS One. January 1, 2012; 7 (5): e36855.
KDEL tagging: a method for generating dominant-negative inhibitors of the secretion of TGF-beta superfamily proteins. , Matsukawa S ., Int J Dev Biol. January 1, 2012; 56 (5): 351-6.
Negative feedback in the bone morphogenetic protein 4 ( BMP4) synexpression group governs its dynamic signaling range and canalizes development. , Paulsen M., Proc Natl Acad Sci U S A. June 21, 2011; 108 (25): 10202-7.
VentX trans-activates p53 and p16ink4a to regulate cellular senescence. , Wu X., J Biol Chem. April 8, 2011; 286 (14): 12693-701.
A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. , Rankin SA , Rankin SA ., Dev Biol. March 15, 2011; 351 (2): 297-310.
Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning. , Kozmikova I., PLoS One. February 3, 2011; 6 (2): e14650.
The vent-like homeobox gene VENTX promotes human myeloid differentiation and is highly expressed in acute myeloid leukemia. , Rawat VP., Proc Natl Acad Sci U S A. September 28, 2010; 107 (39): 16946-51.
Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis. , Faas L., Dev Dyn. April 1, 2009; 238 (4): 835-52.
Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. , Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.
Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling. , Li Y., Genes Dev. November 1, 2008; 22 (21): 3050-63.
Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1. , Herr P., Development. May 1, 2008; 135 (10): 1813-22.
The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm. , Spagnoli FM ., Development. February 1, 2008; 135 (3): 451-61.
Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo. , Rogers CD., Dev Biol. January 1, 2008; 313 (1): 307-19.
The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. , Sander V., EMBO J. June 20, 2007; 26 (12): 2955-65.
Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning. , Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.
Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. , Morrison GM., Development. May 1, 2006; 133 (10): 2011-22.
Tcf- and Vent-binding sites regulate neural-specific geminin expression in the gastrula embryo. , Taylor JJ., Dev Biol. January 15, 2006; 289 (2): 494-506.
Twisted gastrulation is required for forebrain specification and cooperates with Chordin to inhibit BMP signaling during X. tropicalis gastrulation. , Wills A ., Dev Biol. January 1, 2006; 289 (1): 166-78.
An Oct-1 binding site mediates activation of the gata2 promoter by BMP signaling. , Oren T., Nucleic Acids Res. August 1, 2005; 33 (13): 4357-67.
Phylogenetic footprinting and genome scanning identify vertebrate BMP response elements and new target genes. , von Bubnoff A ., Dev Biol. May 15, 2005; 281 (2): 210-26.
Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. , Dupont S., Cell. April 8, 2005; 121 (1): 87-99.
The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos. , Callery EM ., Dev Biol. February 15, 2005; 278 (2): 542-59.
MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1. , Baldessari D., BMC Cell Biol. December 21, 2004; 5 (1): 48.
R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. , Kazanskaya O., Dev Cell. October 1, 2004; 7 (4): 525-34.
New roles for FoxH1 in patterning the early embryo. , Kofron M ., Development. October 1, 2004; 131 (20): 5065-78.
Twisted gastrulation loss-of-function analyses support its role as a BMP inhibitor during early Xenopus embryogenesis. , Blitz IL ., Development. October 1, 2003; 130 (20): 4975-88.
XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. , Osada S., Development. May 1, 2003; 130 (9): 1783-94.
The role of BMP signaling in outgrowth and patterning of the Xenopus tail bud. , Beck CW ., Dev Biol. October 15, 2001; 238 (2): 303-14.
Molecular cloning of a human Vent-like homeobox gene. , Moretti PA., Genomics. August 1, 2001; 76 (1-3): 21-9.
Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm. , Kikkawa M., Int J Dev Biol. April 1, 2001; 45 (2): 387-96.