Results 1 - 29 of 29 results
Id genes are essential for early heart formation. , Cunningham TJ., Genes Dev. July 1, 2017; 31 (13): 1325-1338.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. , Buisson I ., Dev Biol. January 15, 2015; 397 (2): 175-90.
Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. , Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.
RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm. , Janesick A ., Development. March 1, 2012; 139 (6): 1213-24.
Origin and segregation of cranial placodes in Xenopus laevis. , Pieper M., Dev Biol. December 15, 2011; 360 (2): 257-75.
Dorsal- ventral patterning: Crescent is a dorsally secreted Frizzled-related protein that competitively inhibits Tolloid proteases. , Ploper D., Dev Biol. April 15, 2011; 352 (2): 317-28.
Fgf is required to regulate anterior- posterior patterning in the Xenopus lateral plate mesoderm. , Deimling SJ., Mech Dev. January 1, 2011; 128 (7-10): 327-41.
The Wnt antagonists Frzb-1 and Crescent locally regulate basement membrane dissolution in the developing primary mouth. , Dickinson AJ ., Development. April 1, 2009; 136 (7): 1071-81.
Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system. , Strate I., Development. February 1, 2009; 136 (3): 461-72.
The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development. , Brade T., Dev Biol. November 15, 2007; 311 (2): 297-310.
Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo. , Tashiro S., Dev Growth Differ. October 1, 2006; 48 (8): 499-512.
PTEN is required for the normal progression of gastrulation by repressing cell proliferation after MBT in Xenopus embryos. , Ueno S ., Dev Biol. September 1, 2006; 297 (1): 274-83.
FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. , Urban AE ., Dev Biol. September 1, 2006; 297 (1): 103-17.
The expression and alternative splicing of alpha-neurexins during Xenopus development. , Zeng Z., Int J Dev Biol. January 1, 2006; 50 (1): 39-46.
Role of crescent in convergent extension movements by modulating Wnt signaling in early Xenopus embryogenesis. , Shibata M ., Mech Dev. December 1, 2005; 122 (12): 1322-39.
Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis. , Ahrens K ., Dev Biol. December 1, 2005; 288 (1): 40-59.
Exploration of the extracellular space by a large-scale secretion screen in the early Xenopus embryo. , Pera EM ., Int J Dev Biol. January 1, 2005; 49 (7): 781-96.
Expression patterns of Xenopus FGF receptor-like 1/ nou-darake in early Xenopus development resemble those of planarian nou-darake and Xenopus FGF8. , Hayashi S., Dev Dyn. August 1, 2004; 230 (4): 700-7.
Molecular anatomy of placode development in Xenopus laevis. , Schlosser G ., Dev Biol. July 15, 2004; 271 (2): 439-66.
A putative Xenopus Rho-GTPase activating protein ( XrGAP) gene is expressed in the notochord and brain during the early embryogenesis. , Kim J ., Gene Expr Patterns. May 1, 2003; 3 (2): 219-23.
Systematic screening and expression analysis of the head organizer genes in Xenopus embryos. , Shibata M ., Dev Biol. November 15, 2001; 239 (2): 241-56.
xPitx1 plays a role in specifying cement gland and head during early Xenopus development. , Chang W., Genesis. February 1, 2001; 29 (2): 78-90.
Different activities of the frizzled-related proteins frzb2 and sizzled2 during Xenopus anteroposterior patterning. , Bradley L., Dev Biol. November 1, 2000; 227 (1): 118-32.
Xenopus crescent encoding a Frizzled-like domain is expressed in the Spemann organizer and pronephros. , Shibata M ., Mech Dev. September 1, 2000; 96 (2): 243-6.
A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1. , Pera EM ., Mech Dev. September 1, 2000; 96 (2): 183-95.
FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. , Christen B ., Dev Biol. December 15, 1997; 192 (2): 455-66.
Xbap, a vertebrate gene related to bagpipe, is expressed in developing craniofacial structures and in anterior gut muscle. , Newman CS., Dev Biol. January 15, 1997; 181 (2): 223-33.
The first cleavage furrow demarcates the dorsal- ventral axis in Xenopus embryos. , Klein SL., Dev Biol. March 1, 1987; 120 (1): 299-304.