Results 1 - 50 of 103 results
Functions of block of proliferation 1 during anterior development in Xenopus laevis. , Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.
Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm. , Tsukano K., Dev Biol. August 1, 2022; 488 81-90.
The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. , Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Dach1 regulates neural crest migration during embryonic development. , Kim YK., Biochem Biophys Res Commun. July 5, 2020; 527 (4): 896-901.
Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos. , Lichtig H., Front Physiol. February 18, 2020; 11 75.
PTK7 proteolytic fragment proteins function during early Xenopus development. , Lichtig H., Dev Biol. September 1, 2019; 453 (1): 48-55.
Retinoic acid signaling reduction recapitulates the effects of alcohol on embryo size. , Shukrun N., Genesis. July 1, 2019; 57 (7-8): e23284.
Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis. , Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.
Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. , Ding Y ., Proc Natl Acad Sci U S A. September 25, 2018; 115 (39): E9135-E9144.
Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis. , Jin L., Stem Cells. September 1, 2018; 36 (9): 1368-1379.
The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus. , Zhu X., Mech Dev. October 1, 2017; 147 28-36.
EphA7 modulates apical constriction of hindbrain neuroepithelium during neurulation in Xenopus. , Wang X ., Biochem Biophys Res Commun. October 28, 2016; 479 (4): 759-765.
Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling. , Zhao Y., Dev Biol. March 15, 2016; 411 (2): 257-265.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.
Platelet derived growth factor B gene expression in the Xenopus laevis developing central nervous system. , Giannetti K., Int J Dev Biol. January 1, 2016; 60 (4-6): 175-9.
NF2/ Merlin is required for the axial pattern formation in the Xenopus laevis embryo. , Zhu X., Mech Dev. November 1, 2015; 138 Pt 3 305-12.
Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. , Thélie A., Development. October 1, 2015; 142 (19): 3416-28.
The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. , Luehders K., Development. October 1, 2015; 142 (19): 3351-61.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites. , Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. October 2, 2014; 9 (10): e110559.
The Prdm13 histone methyltransferase encoding gene is a Ptf1a- Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. , Hanotel J., Dev Biol. February 15, 2014; 386 (2): 340-57.
An essential role for LPA signalling in telencephalon development. , Geach TJ ., Development. February 1, 2014; 141 (4): 940-9.
Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein. , Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.
The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling. , Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.
Scaling of dorsal- ventral patterning by embryo size-dependent degradation of Spemann''s organizer signals. , Inomata H ., Cell. June 6, 2013; 153 (6): 1296-311.
Regulation of primitive hematopoiesis by class I histone deacetylases. , Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.
Self-regulation of the head-inducing properties of the Spemann organizer. , Inui M., Proc Natl Acad Sci U S A. September 18, 2012; 109 (38): 15354-9.
Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. , Reis AH., Dev Biol. May 15, 2012; 365 (2): 350-62.
Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. , Della Gaspera B ., Dev Dyn. May 1, 2012; 241 (5): 995-1007.
The cytoplasmic tyrosine kinase Arg regulates gastrulation via control of actin organization. , Bonacci G., Dev Biol. April 1, 2012; 364 (1): 42-55.
The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus. , Bentaya S., Dev Biol. March 15, 2012; 363 (2): 362-72.
Xaml1/ Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus. , Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.
Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. , Scerbo P ., PLoS One. January 1, 2012; 7 (5): e36855.
The forkhead transcription factor FoxB1 regulates the dorsal- ventral and anterior- posterior patterning of the ectoderm during early Xenopus embryogenesis. , Takebayashi-Suzuki K., Dev Biol. December 1, 2011; 360 (1): 11-29.
The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. , Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.
Activity of the RhoU/ Wrch1 GTPase is critical for cranial neural crest cell migration. , Fort P., Dev Biol. February 15, 2011; 350 (2): 451-63.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. , Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.
The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos. , Maczkowiak F., Dev Biol. April 15, 2010; 340 (2): 381-96.
A divergent Tbx6-related gene and Tbx6 are both required for neural crest and intermediate mesoderm development in Xenopus. , Callery EM ., Dev Biol. April 1, 2010; 340 (1): 75-87.
Dazap2 is required for FGF-mediated posterior neural patterning, independent of Wnt and Cdx function. , Roche DD., Dev Biol. September 1, 2009; 333 (1): 26-36.
Mad is required for wingless signaling in wing development and segment patterning in Drosophila. , Eivers E., PLoS One. August 6, 2009; 4 (8): e6543.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. , Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.
Zebrafish gbx1 refines the midbrain- hindbrain boundary border and mediates the Wnt8 posteriorization signal. , Rhinn M., Neural Dev. April 2, 2009; 4 12.
Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system. , Strate I., Development. February 1, 2009; 136 (3): 461-72.
Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways. , Zhao H ., Development. April 1, 2008; 135 (7): 1283-93.
Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians. , Iglesias M., Development. April 1, 2008; 135 (7): 1215-21.