Results 1 - 23 of 23 results
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
The secreted BMP antagonist ERFE is required for the development of a functional circulatory system in Xenopus. , Melchert J., Dev Biol. March 15, 2020; 459 (2): 138-148.
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. , Buisson I ., Dev Biol. January 15, 2015; 397 (2): 175-90.
Diverse functions of kindlin/fermitin proteins during embryonic development in Xenopus laevis. , Rozario T., Mech Dev. August 1, 2014; 133 203-17.
Regulation of primitive hematopoiesis by class I histone deacetylases. , Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.
Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors. , Nejigane S., Int J Dev Biol. January 1, 2013; 57 (5): 407-14.
Fgf is required to regulate anterior- posterior patterning in the Xenopus lateral plate mesoderm. , Deimling SJ., Mech Dev. January 1, 2011; 128 (7-10): 327-41.
Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. , Saharinen P., Genes Dev. May 1, 2010; 24 (9): 875-80.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development. , Kazanskaya O., Development. November 1, 2008; 135 (22): 3655-64.
A Myc- Slug ( Snail2)/ Twist regulatory circuit directs vascular development. , Rodrigues CO., Development. June 1, 2008; 135 (11): 1903-11.
A crucial role of a high mobility group protein HMGA2 in cardiogenesis. , Monzen K., Nat Cell Biol. May 1, 2008; 10 (5): 567-74.
Xenopus Dab2 is required for embryonic angiogenesis. , Cheong SM., BMC Dev Biol. December 19, 2006; 6 63.
Xapelin and Xmsr are required for cardiovascular development in Xenopus laevis. , Inui M., Dev Biol. October 1, 2006; 298 (1): 188-200.
Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. , Cox CM., Dev Biol. August 1, 2006; 296 (1): 177-89.
A novel gene, Ami is expressed in vascular tissue in Xenopus laevis. , Inui M., Gene Expr Patterns. August 1, 2006; 6 (6): 613-9.
Genomic analysis of Xenopus organizer function. , Hufton AL., BMC Dev Biol. June 6, 2006; 6 27.
Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. , Walmsley M., Development. December 1, 2002; 129 (24): 5683-95.
Degradation of hyaluronan by a Hyal2-type hyaluronidase affects pattern formation of vitelline vessels during embryogenesis of Xenopus laevis. , Müllegger J., Mech Dev. February 1, 2002; 111 (1-2): 25-35.
Elucidating the origins of the vascular system: a fate map of the vascular endothelial and red blood cell lineages in Xenopus laevis. , Mills KR ., Dev Biol. May 15, 1999; 209 (2): 352-68.
Towards a molecular anatomy of the Xenopus pronephric kidney. , Brändli AW ., Int J Dev Biol. January 1, 1999; 43 (5): 381-95.
VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. , Cleaver O ., Development. October 1, 1998; 125 (19): 3905-14.
Neovascularization of the Xenopus embryo. , Cleaver O ., Dev Dyn. September 1, 1997; 210 (1): 66-77.