Results 1 - 50 of 59 results
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Dach1 regulates neural crest migration during embryonic development. , Kim YK., Biochem Biophys Res Commun. July 5, 2020; 527 (4): 896-901.
Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos. , Lichtig H., Front Physiol. February 18, 2020; 11 75.
Agr2-interacting Prod1-like protein Tfp4 from Xenopus laevis is necessary for early forebrain and eye development as well as for the tadpole appendage regeneration. , Tereshina MB., Genesis. May 1, 2019; 57 (5): e23293.
Roles of Xenopus chemokine ligand CXCLh (XCXCLh) in early embryogenesis. , Goto T ., Dev Growth Differ. May 1, 2018; 60 (4): 226-238.
Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo. , Gouignard N ., PLoS One. January 18, 2018; 13 (1): e0191751.
Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. , Ding Y ., Dev Biol. June 15, 2017; 426 (2): 176-187.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
Chronic sublethal exposure to silver nanoparticles disrupts thyroid hormone signaling during Xenopus laevis metamorphosis. , Carew AC., Aquat Toxicol. February 1, 2015; 159 99-108.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. October 2, 2014; 9 (10): e110559.
Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate. , Tereshina MB., Biol Open. March 15, 2014; 3 (3): 192-203.
Agr genes, missing in amniotes, are involved in the body appendages regeneration in frog tadpoles. , Ivanova AS., Sci Rep. January 1, 2013; 3 1279.
Identification and evolution of molecular domains involved in differentiating the cement gland-promoting activity of Otx proteins in Xenopus laevis. , Mancini P ., Mech Dev. January 1, 2013; 130 (11-12): 628-39.
Self-regulation of the head-inducing properties of the Spemann organizer. , Inui M., Proc Natl Acad Sci U S A. September 18, 2012; 109 (38): 15354-9.
Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. , Reis AH., Dev Biol. May 15, 2012; 365 (2): 350-62.
Histology of plastic embedded amphibian embryos and larvae. , Kurth T., Genesis. March 1, 2012; 50 (3): 235-50.
The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. , Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.
Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. , Yan B., Dev Dyn. December 1, 2010; 239 (12): 3467-80.
Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. , Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.
Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. , Kot-Leibovich H., Dis Model Mech. January 1, 2009; 2 (5-6): 295-305.
Hairy2- Id3 interactions play an essential role in Xenopus neural crest progenitor specification. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.
Cold-inducible RNA binding protein ( CIRP), a novel XTcf-3 specific target gene regulates neural development in Xenopus. , van Venrooy S ., BMC Dev Biol. August 7, 2008; 8 77.
Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1. , Herr P., Development. May 1, 2008; 135 (10): 1813-22.
Xenopus galectin-VIa shows highly specific expression in cement glands and is regulated by canonical Wnt signaling. , Michiue T ., Gene Expr Patterns. October 1, 2007; 7 (8): 852-7.
The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions. , Ermakova GV., Dev Biol. July 15, 2007; 307 (2): 483-97.
Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/ Smad1 pathway. , Alexandrova EM., Dev Biol. November 15, 2006; 299 (2): 398-410.
Function of the two Xenopus smad4s in early frog development. , Chang C ., J Biol Chem. October 13, 2006; 281 (41): 30794-803.
A Serpin family gene, protease nexin-1 has an activity distinct from protease inhibition in early Xenopus embryos. , Onuma Y ., Mech Dev. June 1, 2006; 123 (6): 463-71.
The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition. , Cruciat CM., J Biol Chem. May 5, 2006; 281 (18): 12986-93.
BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. , Gamer LW., Dev Biol. September 1, 2005; 285 (1): 156-68.
XEpac, a guanine nucleotide-exchange factor for Rap GTPase, is a novel hatching gland specific marker during the Xenopus embryogenesis. , Lee SJ., Dev Dyn. April 1, 2005; 232 (4): 1091-7.
X-epilectin: a novel epidermal fucolectin regulated by BMP signalling. , Massé K ., Int J Dev Biol. December 1, 2004; 48 (10): 1119-29.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.
A PTP-PEST-like protein affects alpha5beta1-integrin-dependent matrix assembly, cell adhesion, and migration in Xenopus gastrula. , Cousin H ., Dev Biol. January 15, 2004; 265 (2): 416-32.
Regulation of nodal and BMP signaling by tomoregulin-1 ( X7365) through novel mechanisms. , Chang C ., Dev Biol. March 1, 2003; 255 (1): 1-11.
Cement gland-specific activation of the Xag1 promoter is regulated by co-operation of putative Ets and ATF/ CREB transcription factors. , Wardle FC., Development. October 1, 2002; 129 (19): 4387-97.
otx2 expression in the ectoderm activates anterior neural determination and is required for Xenopus cement gland formation. , Gammill LS., Dev Biol. December 1, 2001; 240 (1): 223-36.
Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. , Zohn IE., Dev Biol. November 1, 2001; 239 (1): 118-31.
Neural and head induction by insulin-like growth factor signals. , Pera EM ., Dev Cell. November 1, 2001; 1 (5): 655-65.
Xotx5b, a new member of the Otx gene family, may be involved in anterior and eye development in Xenopus laevis. , Vignali R ., Mech Dev. August 1, 2000; 96 (1): 3-13.
Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. , Heasman J ., Dev Biol. June 1, 2000; 222 (1): 124-34.
XSIP1, a member of two-handed zinc finger proteins, induced anterior neural markers in Xenopus laevis animal cap. , Eisaki A., Biochem Biophys Res Commun. April 29, 2000; 271 (1): 151-7.
The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo. , Ermakova GV., Development. October 1, 1999; 126 (20): 4513-23.
FGF is required for posterior neural patterning but not for neural induction. , Holowacz T., Dev Biol. January 15, 1999; 205 (2): 296-308.
A Meis family protein caudalizes neural cell fates in Xenopus. , Salzberg A., Mech Dev. January 1, 1999; 80 (1): 3-13.
Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. , Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.
Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning. , Nakayama T ., Development. March 1, 1998; 125 (5): 857-67.
Smad6 inhibits BMP/ Smad1 signaling by specifically competing with the Smad4 tumor suppressor. , Hata A., Genes Dev. January 15, 1998; 12 (2): 186-97.
Identification of otx2 target genes and restrictions in ectodermal competence during Xenopus cement gland formation. , Gammill LS., Development. January 1, 1997; 124 (2): 471-81.
A sticky problem: the Xenopus cement gland as a paradigm for anteroposterior patterning. , Sive H ., Dev Dyn. March 1, 1996; 205 (3): 265-80.