Results 1 - 46 of 46 results
Rab7 is required for mesoderm patterning and gastrulation in Xenopus. , Kreis J., Biol Open. July 15, 2021; 10 (7):
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis. , Huang X ., Genes (Basel). November 18, 2020; 11 (11):
Cdc42 Effector Protein 3 Interacts With Cdc42 in Regulating Xenopus Somite Segmentation. , Kho M., Front Physiol. February 1, 2019; 10 542.
Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. , Gentsch GE ., Dev Cell. March 12, 2018; 44 (5): 597-610.e10.
Candidate Heterotaxy Gene FGFR4 Is Essential for Patterning of the Left- Right Organizer in Xenopus. , Sempou E., Front Physiol. February 5, 2018; 9 1705.
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. , Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. , Buisson I ., Dev Biol. January 15, 2015; 397 (2): 175-90.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. October 2, 2014; 9 (10): e110559.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. , Lim CY., Development. February 1, 2013; 140 (4): 853-60.
Early transcriptional targets of MyoD link myogenesis and somitogenesis. , Maguire RJ ., Dev Biol. November 15, 2012; 371 (2): 256-68.
Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis. , Havis E., Development. June 1, 2012; 139 (11): 1910-20.
Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. , Della Gaspera B ., Dev Dyn. May 1, 2012; 241 (5): 995-1007.
Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. , Scerbo P ., PLoS One. January 1, 2012; 7 (5): e36855.
EBF proteins participate in transcriptional regulation of Xenopus muscle development. , Green YS., Dev Biol. October 1, 2011; 358 (1): 240-50.
Negative feedback in the bone morphogenetic protein 4 ( BMP4) synexpression group governs its dynamic signaling range and canalizes development. , Paulsen M., Proc Natl Acad Sci U S A. June 21, 2011; 108 (25): 10202-7.
A conserved MRF4 promoter drives transgenic expression in Xenopus embryonic somites and adult muscle. , Hinterberger TJ ., Int J Dev Biol. January 1, 2010; 54 (4): 617-25.
The RNA-binding protein Seb4/ RBM24 is a direct target of MyoD and is required for myogenesis during Xenopus early development. , Li HY., Mech Dev. January 1, 2010; 127 (5-6): 281-91.
Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution. , Gray RS ., Dev Dyn. August 1, 2009; 238 (8): 2044-57.
Lef1 plays a role in patterning the mesoderm and ectoderm in Xenopus tropicalis. , Roel G., Int J Dev Biol. January 1, 2009; 53 (1): 81-9.
Loss of REEP4 causes paralysis of the Xenopus embryo. , Argasinska J ., Int J Dev Biol. January 1, 2009; 53 (1): 37-43.
FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. , Urban AE ., Dev Biol. September 1, 2006; 297 (1): 103-17.
Limb regeneration in Xenopus laevis froglet. , Suzuki M , Suzuki M ., ScientificWorldJournal. May 12, 2006; 6 Suppl 1 26-37.
Twisted gastrulation is required for forebrain specification and cooperates with Chordin to inhibit BMP signaling during X. tropicalis gastrulation. , Wills A ., Dev Biol. January 1, 2006; 289 (1): 166-78.
p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development. , Keren A., Dev Biol. December 1, 2005; 288 (1): 73-86.
R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. , Kazanskaya O., Dev Cell. October 1, 2004; 7 (4): 525-34.
Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor. , Chung HA., Genes Cells. August 1, 2004; 9 (8): 749-61.
Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis. , Grimaldi A ., Development. July 1, 2004; 131 (14): 3249-62.
Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development. , Dale L ., Mech Dev. December 1, 2002; 119 (2): 177-90.
Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm. , Yang J ., Mech Dev. July 1, 2002; 115 (1-2): 79-89.
Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. , Nutt SL., Genes Dev. May 1, 2001; 15 (9): 1152-66.
A role for GATA5 in Xenopus endoderm specification. , Weber H., Development. October 1, 2000; 127 (20): 4345-60.
Is chordin a long-range- or short-range-acting factor? Roles for BMP1-related metalloproteases in chordin and BMP4 autofeedback loop regulation. , Blitz IL ., Dev Biol. July 1, 2000; 223 (1): 120-38.
Neuregulin induces the expression of mesodermal genes in the ectoderm of Xenopus laevis. , Chung HG., Mol Cells. October 31, 1999; 9 (5): 497-503.
Temporal restriction of MyoD induction and autocatalysis during Xenopus mesoderm formation. , Steinbach OC., Dev Biol. October 15, 1998; 202 (2): 280-92.
Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. , Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.
An interferon regulatory factor-related gene ( xIRF-6) is expressed in the posterior mesoderm during the early development of Xenopus laevis. , Hatada S., Gene. December 12, 1997; 203 (2): 183-8.
The role of cyclin-dependent kinase 5 and a novel regulatory subunit in regulating muscle differentiation and patterning. , Philpott A ., Genes Dev. June 1, 1997; 11 (11): 1409-21.
The expression pattern of Xenopus Mox-2 implies a role in initial mesodermal differentiation. , Candia AF ., Mech Dev. July 1, 1995; 52 (1): 27-36.
Cardiac myosin heavy chain expression during heart development in Xenopus laevis. , Cox WG., Differentiation. April 1, 1995; 58 (4): 269-80.
Control of somitic expression of tenascin in Xenopus embryos by myogenic factors and Brachyury. , Umbhauer M ., Dev Dyn. August 1, 1994; 200 (4): 269-77.
The RSRF/MEF2 protein SL1 regulates cardiac muscle-specific transcription of a myosin light-chain gene in Xenopus embryos. , Chambers AE ., Genes Dev. June 1, 1994; 8 (11): 1324-34.
Expression of XMyoD protein in early Xenopus laevis embryos. , Hopwood ND ., Development. January 1, 1992; 114 (1): 31-8.
The Xenopus MyoD gene: an unlocalised maternal mRNA predates lineage-restricted expression in the early embryo. , Harvey RP ., Development. April 1, 1990; 108 (4): 669-80.