Results 1 - 50 of 198 results
Dual roles of Akirin2 protein during Xenopus neural development. , Liu X., J Biol Chem. April 7, 2017; 292 (14): 5676-5684.
ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia. , Walentek P ., Dev Biol. December 15, 2015; 408 (2): 292-304.
Identification of REST targets in the Xenopus tropicalis genome. , Saritas-Yildirim B., BMC Genomics. May 14, 2015; 16 380.
ERK7 regulates ciliogenesis by phosphorylating the actin regulator CapZIP in cooperation with Dishevelled. , Miyatake K., Nat Commun. March 31, 2015; 6 6666.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
A distinct mechanism of vascular lumen formation in Xenopus requires EGFL7. , Charpentier MS., PLoS One. February 6, 2015; 10 (2): e0116086.
Leiomodin 3 and tropomodulin 4 have overlapping functions during skeletal myofibrillogenesis. , Nworu CU., J Cell Sci. January 15, 2015; 128 (2): 239-50.
Comparative expression analysis of pfdn6a and tcp1α during Xenopus development. , Marracci S ., Int J Dev Biol. January 1, 2015; 59 (4-6): 235-40.
NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling. , Zhang Y ., Dev Biol. August 1, 2014; 392 (1): 15-25.
Migratory and adhesive properties of Xenopus laevis primordial germ cells in vitro. , Dzementsei A., Biol Open. December 15, 2013; 2 (12): 1279-87.
PPARβ interprets a chromatin signature of pluripotency to promote embryonic differentiation at gastrulation. , Rotman N., PLoS One. December 9, 2013; 8 (12): e83300.
Calpain2 protease: A new member of the Wnt/Ca(2+) pathway modulating convergent extension movements in Xenopus. , Zanardelli S., Dev Biol. December 1, 2013; 384 (1): 83-100.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
The Nedd4-binding protein 3 ( N4BP3) is crucial for axonal and dendritic branching in developing neurons. , Schmeisser MJ., Neural Dev. September 17, 2013; 8 18.
The human PDZome: a gateway to PSD95-Disc large-zonula occludens (PDZ)-mediated functions. , Belotti E., Mol Cell Proteomics. September 1, 2013; 12 (9): 2587-603.
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. , Ioannou A ., Dev Biol. August 15, 2013; 380 (2): 243-58.
The cytoskeletal protein Zyxin inhibits Shh signaling during the CNS patterning in Xenopus laevis through interaction with the transcription factor Gli1. , Martynova NY., Dev Biol. August 1, 2013; 380 (1): 37-48.
Cubilin, a high affinity receptor for fibroblast growth factor 8, is required for cell survival in the developing vertebrate head. , Cases O., J Biol Chem. June 7, 2013; 288 (23): 16655-16670.
Expression of Ski can act as a negative feedback mechanism on retinoic acid signaling. , Melling MA., Dev Dyn. June 1, 2013; 242 (6): 604-13.
Developmental regulation of locomotive activity in Xenopus primordial germ cells. , Terayama K., Dev Growth Differ. February 1, 2013; 55 (2): 217-28.
Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors. , Nejigane S., Int J Dev Biol. January 1, 2013; 57 (5): 407-14.
A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. , Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.
Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo. , Ninomiya H ., J Cell Sci. April 15, 2012; 125 (Pt 8): 1877-83.
The cytoplasmic tyrosine kinase Arg regulates gastrulation via control of actin organization. , Bonacci G., Dev Biol. April 1, 2012; 364 (1): 42-55.
Histology of plastic embedded amphibian embryos and larvae. , Kurth T., Genesis. March 1, 2012; 50 (3): 235-50.
Down''s-syndrome-related kinase Dyrk1A modulates the p120-catenin- Kaiso trajectory of the Wnt signaling pathway. , Hong JY., J Cell Sci. February 1, 2012; 125 (Pt 3): 561-9.
Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/ β-catenin signaling pathway. , Fujimi TJ ., Dev Biol. January 15, 2012; 361 (2): 220-31.
The LIM adaptor protein LMO4 is an essential regulator of neural crest development. , Ochoa SD., Dev Biol. January 15, 2012; 361 (2): 313-25.
Friend of GATA ( FOG) interacts with the nucleosome remodeling and deacetylase complex (NuRD) to support primitive erythropoiesis in Xenopus laevis. , Mimoto MS., PLoS One. January 1, 2012; 7 (1): e29882.
Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. , Evans AL., PLoS One. January 1, 2012; 7 (3): e33346.
Kazrin, and its binding partners ARVCF- and delta-catenin, are required for Xenopus laevis craniofacial development. , Cho K., Dev Dyn. December 1, 2011; 240 (12): 2601-12.
The forkhead transcription factor FoxB1 regulates the dorsal- ventral and anterior- posterior patterning of the ectoderm during early Xenopus embryogenesis. , Takebayashi-Suzuki K., Dev Biol. December 1, 2011; 360 (1): 11-29.
Two promoters with distinct activities in different tissues drive the expression of heparanase in Xenopus. , Bertolesi GE ., Dev Dyn. December 1, 2011; 240 (12): 2657-72.
EBF proteins participate in transcriptional regulation of Xenopus muscle development. , Green YS., Dev Biol. October 1, 2011; 358 (1): 240-50.
Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus. , Nie S ., Mol Biol Cell. September 1, 2011; 22 (18): 3355-65.
Regulation of early Xenopus development by the PIAS genes. , Burn B., Dev Dyn. September 1, 2011; 240 (9): 2120-6.
The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1. , Lander R., J Cell Biol. July 11, 2011; 194 (1): 17-25.
Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease. , Dubaissi E ., Dis Model Mech. March 1, 2011; 4 (2): 179-92.
Activity of the RhoU/ Wrch1 GTPase is critical for cranial neural crest cell migration. , Fort P., Dev Biol. February 15, 2011; 350 (2): 451-63.
Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice. , Xiang W., J Cell Mol Med. February 1, 2011; 15 (2): 359-74.
Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left- right asymmetry in Xenopus. , Marjoram L., Development. February 1, 2011; 138 (3): 475-85.
Xenopus Kazrin interacts with ARVCF-catenin, spectrin and p190B RhoGAP, and modulates RhoA activity and epithelial integrity. , Cho K., J Cell Sci. December 1, 2010; 123 (Pt 23): 4128-44.
Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. , Lee SY., J Biol Chem. September 17, 2010; 285 (38): 29525-34.
ADAM13 induces cranial neural crest by cleaving class B Ephrins and regulating Wnt signaling. , Wei S ., Dev Cell. August 17, 2010; 19 (2): 345-52.
Appl1 is essential for the survival of Xenopus pancreas, duodenum, and stomach progenitor cells. , Wen L., Dev Dyn. August 1, 2010; 239 (8): 2198-207.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos. , Maczkowiak F., Dev Biol. April 15, 2010; 340 (2): 381-96.
Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction. , Wang Y., J Biol Chem. April 2, 2010; 285 (14): 10890-901.
Nectin-2 and N-cadherin interact through extracellular domains and induce apical accumulation of F-actin in apical constriction of Xenopus neural tube morphogenesis. , Morita H., Development. April 1, 2010; 137 (8): 1315-25.
The F-box protein Cdc4/ Fbxw7 is a novel regulator of neural crest development in Xenopus laevis. , Almeida AD., Neural Dev. January 4, 2010; 5 1.