Sox21 homeologs autoregulate expression levels to control progression through neurogenesis. , Damuth DL., Genesis. August 1, 2024; 62 (4): e23612.
Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to 3D digital imaging of Xenopus embryonic tissues. , Sakagami K., Dev Growth Differ. April 4, 2024; 66 (3): 256-265.
OTUD3: A Lys6 and Lys63 specific deubiquitinase in early vertebrate development. , Job F., Biochim Biophys Acta Gene Regul Mech. March 1, 2023; 1866 (1): 194901.
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Interplay of TRIM2 E3 Ubiquitin Ligase and ALIX/ESCRT Complex: Control of Developmental Plasticity During Early Neurogenesis. , Lokapally A., Cells. July 20, 2020; 9 (7):
Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway. , Solini GE., Dev Biol. April 15, 2020; 460 (2): 99-107.
Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos. , Lichtig H., Front Physiol. January 1, 2020; 11 75.
Evolution of the Rho guanine nucleotide exchange factors Kalirin and Trio and their gene expression in Xenopus development. , Kratzer MC., Gene Expr Patterns. June 1, 2019; 32 18-27.
Calcium Activity Dynamics Correlate with Neuronal Phenotype at a Single Cell Level and in a Threshold-Dependent Manner. , Paudel S., Int J Mol Sci. April 16, 2019; 20 (8):
The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis. , Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.
Ketamine Modulates Zic5 Expression via the Notch Signaling Pathway in Neural Crest Induction. , Shi Y ., Front Mol Neurosci. February 7, 2018; 11 9.
Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo. , Gouignard N ., PLoS One. January 18, 2018; 13 (1): e0191751.
Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes. , Riddiford N., Dev Biol. November 15, 2017; 431 (2): 152-167.
N1-Src Kinase Is Required for Primary Neurogenesis in Xenopus tropicalis. , Lewis PA., J Neurosci. August 30, 2017; 37 (35): 8477-8485.
Dual roles of Akirin2 protein during Xenopus neural development. , Liu X., J Biol Chem. April 7, 2017; 292 (14): 5676-5684.
JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis. , Tapia VS ., Regeneration (Oxf). February 1, 2017; 4 (1): 21-35.
Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling. , Zhao Y., Dev Biol. March 15, 2016; 411 (2): 257-265.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.
Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. , Thélie A., Development. October 1, 2015; 142 (19): 3416-28.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
Sox21 regulates the progression of neuronal differentiation in a dose-dependent manner. , Whittington N., Dev Biol. January 15, 2015; 397 (2): 237-47.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. , Iwasaki Y ., Development. October 1, 2014; 141 (19): 3740-51.
The Prdm13 histone methyltransferase encoding gene is a Ptf1a- Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. , Hanotel J., Dev Biol. February 15, 2014; 386 (2): 340-57.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.
Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein. , Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.
NumbL is essential for Xenopus primary neurogenesis. , Nieber F., BMC Dev Biol. October 14, 2013; 13 36.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. , Ioannou A ., Dev Biol. August 15, 2013; 380 (2): 243-58.
The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling. , Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.
AP-1( c- Jun/ FosB) mediates xFoxD5b expression in Xenopus early developmental neurogenesis. , Yoon J ., Int J Dev Biol. January 1, 2013; 57 (11-12): 865-72.
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. , Pieper M., Development. March 1, 2012; 139 (6): 1175-87.
Xaml1/ Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus. , Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.
Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. , Evans AL., PLoS One. January 1, 2012; 7 (3): e33346.
The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. , Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.
Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning. , Ma P., Biochem Biophys Res Commun. August 19, 2011; 412 (1): 170-4.
Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. , Lee SY., J Biol Chem. September 17, 2010; 285 (38): 29525-34.
FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation. , Roth M., Development. May 1, 2010; 137 (9): 1553-62.
Cell-cell interactions during remodeling of the intestine at metamorphosis in Xenopus laevis. , Schreiber AM ., Dev Biol. July 1, 2009; 331 (1): 89-98.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. , Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.
Xenopus ADAM19 is involved in neural, neural crest and muscle development. , Neuner R., Mech Dev. January 1, 2009; 126 (3-4): 240-55.
Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis. , Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.
Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. , Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.
Loss of REEP4 causes paralysis of the Xenopus embryo. , Argasinska J ., Int J Dev Biol. January 1, 2009; 53 (1): 37-43.
Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development. , Bury FJ., Dev Dyn. November 1, 2008; 237 (11): 3352-60.
Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 368-80.
Hairy2- Id3 interactions play an essential role in Xenopus neural crest progenitor specification. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.
A crucial role for hnRNP K in axon development in Xenopus laevis. , Liu Y ., Development. September 1, 2008; 135 (18): 3125-35.