Results 1 - 50 of 66 results
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Interplay of TRIM2 E3 Ubiquitin Ligase and ALIX/ESCRT Complex: Control of Developmental Plasticity During Early Neurogenesis. , Lokapally A., Cells. July 20, 2020; 9 (7):
Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway. , Solini GE., Dev Biol. April 15, 2020; 460 (2): 99-107.
Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos. , Lichtig H., Front Physiol. February 18, 2020; 11 75.
Evolution of the Rho guanine nucleotide exchange factors Kalirin and Trio and their gene expression in Xenopus development. , Kratzer MC., Gene Expr Patterns. June 1, 2019; 32 18-27.
Calcium Activity Dynamics Correlate with Neuronal Phenotype at a Single Cell Level and in a Threshold-Dependent Manner. , Paudel S., Int J Mol Sci. April 16, 2019; 20 (8):
The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis. , Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.
Ketamine Modulates Zic5 Expression via the Notch Signaling Pathway in Neural Crest Induction. , Shi Y , Shi Y ., Front Mol Neurosci. February 7, 2018; 11 9.
Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo. , Gouignard N ., PLoS One. January 18, 2018; 13 (1): e0191751.
Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes. , Riddiford N., Dev Biol. November 15, 2017; 431 (2): 152-167.
N1-Src Kinase Is Required for Primary Neurogenesis in Xenopus tropicalis. , Lewis PA., J Neurosci. August 30, 2017; 37 (35): 8477-8485.
Dual roles of Akirin2 protein during Xenopus neural development. , Liu X., J Biol Chem. April 7, 2017; 292 (14): 5676-5684.
JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis. , Tapia VS ., Regeneration (Oxf). March 14, 2017; 4 (1): 21-35.
Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling. , Zhao Y., Dev Biol. March 15, 2016; 411 (2): 257-265.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.
Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. , Thélie A., Development. October 1, 2015; 142 (19): 3416-28.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. October 2, 2014; 9 (10): e110559.
The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. , Iwasaki Y ., Development. October 1, 2014; 141 (19): 3740-51.
The Prdm13 histone methyltransferase encoding gene is a Ptf1a- Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. , Hanotel J., Dev Biol. February 15, 2014; 386 (2): 340-57.
Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein. , Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.
NumbL is essential for Xenopus primary neurogenesis. , Nieber F., BMC Dev Biol. October 14, 2013; 13 36.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. , Ioannou A ., Dev Biol. August 15, 2013; 380 (2): 243-58.
The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling. , Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.
AP-1( c- Jun/ FosB) mediates xFoxD5b expression in Xenopus early developmental neurogenesis. , Yoon J., Int J Dev Biol. January 1, 2013; 57 (11-12): 865-72.
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. , Pieper M., Development. March 1, 2012; 139 (6): 1175-87.
Xaml1/ Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus. , Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.
Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. , Evans AL., PLoS One. January 1, 2012; 7 (3): e33346.
Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning. , Ma P., Biochem Biophys Res Commun. August 19, 2011; 412 (1): 170-4.
Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. , Lee SY., J Biol Chem. September 17, 2010; 285 (38): 29525-34.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. , Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.
Xenopus ADAM19 is involved in neural, neural crest and muscle development. , Neuner R., Mech Dev. January 1, 2009; 126 (3-4): 240-55.
Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis. , Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.
Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development. , Bury FJ., Dev Dyn. November 1, 2008; 237 (11): 3352-60.
A crucial role for hnRNP K in axon development in Xenopus laevis. , Liu Y ., Development. September 1, 2008; 135 (18): 3125-35.
BDNF promotes target innervation of Xenopus mandibular trigeminal axons in vivo. , Huang JK ., BMC Dev Biol. May 31, 2007; 7 59.
Ptf1a triggers GABAergic neuronal cell fates in the retina. , Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.
Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning. , Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.
FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. , Fletcher RB., Development. May 1, 2006; 133 (9): 1703-14.
Mxi1 is essential for neurogenesis in Xenopus and acts by bridging the pan-neural and proneural genes. , Klisch TJ., Dev Biol. April 15, 2006; 292 (2): 470-85.
Novel Daple-like protein positively regulates both the Wnt/beta-catenin pathway and the Wnt/ JNK pathway in Xenopus. , Kobayashi H., Mech Dev. October 1, 2005; 122 (10): 1138-53.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.
Evidence for antagonism of BMP-4 signals by MAP kinase during Xenopus axis determination and neural specification. , Sater AK ., Differentiation. September 1, 2003; 71 (7): 434-44.
Selective degradation of excess Ldb1 by Rnf12/ RLIM confers proper Ldb1 expression levels and Xlim-1/ Ldb1 stoichiometry in Xenopus organizer functions. , Hiratani I., Development. September 1, 2003; 130 (17): 4161-75.
The function of Xenopus germ cell nuclear factor ( xGCNF) in morphogenetic movements during neurulation. , Barreto G., Dev Biol. May 15, 2003; 257 (2): 329-42.
Depletion of the cell-cycle inhibitor p27( Xic1) impairs neuronal differentiation and increases the number of ElrC(+) progenitor cells in Xenopus tropicalis. , Carruthers S ., Mech Dev. May 1, 2003; 120 (5): 607-16.