Results 1 - 50 of 64 results
Systematic mapping of rRNA 2''-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. , Delhermite J ., PLoS Genet. January 18, 2022; 18 (1): e1010012.
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
Mcrs1 interacts with Six1 to influence early craniofacial and otic development. , Neilson KM ., Dev Biol. November 1, 2020; 467 (1-2): 39-50.
Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. , Mukherjee S ., Elife. September 7, 2020; 9
Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction. , Pegge J., Dev Biol. April 15, 2020; 460 (2): 108-114.
Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome. , Greenberg RS., Cell. September 5, 2019; 178 (6): 1421-1436.e24.
Gli2 is required for the induction and migration of Xenopus laevis neural crest. , Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.
Shared evolutionary origin of vertebrate neural crest and cranial placodes. , Horie R., Nature. August 1, 2018; 560 (7717): 228-232.
Ketamine Modulates Zic5 Expression via the Notch Signaling Pathway in Neural Crest Induction. , Shi Y , Shi Y ., Front Mol Neurosci. February 7, 2018; 11 9.
PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation. , Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.
Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. , Ding Y ., Dev Biol. June 15, 2017; 426 (2): 176-187.
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome. , Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.
Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin. , Gouignard N ., Dis Model Mech. June 1, 2016; 9 (6): 607-20.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.
The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling. , Wang C ., J Biol Chem. September 4, 2015; 290 (36): 21925-38.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
Snail2/ Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development. , Tien CL., Development. February 15, 2015; 142 (4): 722-31.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.
Transcription factor AP2 epsilon ( Tfap2e) regulates neural crest specification in Xenopus. , Hong CS ., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.
PV.1 suppresses the expression of FoxD5b during neural induction in Xenopus embryos. , Yoon J., Mol Cells. March 1, 2014; 37 (3): 220-5.
Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. , Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. , Pieper M., Development. March 1, 2012; 139 (6): 1175-87.
The LIM adaptor protein LMO4 is an essential regulator of neural crest development. , Ochoa SD., Dev Biol. January 15, 2012; 361 (2): 313-25.
Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. , Scerbo P ., PLoS One. January 1, 2012; 7 (5): e36855.
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. , Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.
Xenopus reduced folate carrier regulates neural crest development epigenetically. , Li J., PLoS One. January 1, 2011; 6 (11): e27198.
Jiraiya attenuates BMP signaling by interfering with type II BMP receptors in neuroectodermal patterning. , Aramaki T., Dev Cell. October 19, 2010; 19 (4): 547-61.
Induction of vertebrate regeneration by a transient sodium current. , Tseng AS ., J Neurosci. September 29, 2010; 30 (39): 13192-200.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
The F-box protein Cdc4/ Fbxw7 is a novel regulator of neural crest development in Xenopus laevis. , Almeida AD., Neural Dev. January 4, 2010; 5 1.
Identification of a novel negative regulator of activin/ nodal signaling in mesendodermal formation of Xenopus embryos. , Cheong SM., J Biol Chem. June 19, 2009; 284 (25): 17052-60.
Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis. , Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.
Samba, a Xenopus hnRNP expressed in neural and neural crest tissues. , Yan CY., Dev Dyn. January 1, 2009; 238 (1): 204-9.
A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification. , Bonano M., Dev Biol. November 1, 2008; 323 (1): 114-29.
Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 368-80.
Hairy2- Id3 interactions play an essential role in Xenopus neural crest progenitor specification. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.
Extracellular regulation of developmental cell signaling by XtSulf1. , Freeman SD., Dev Biol. August 15, 2008; 320 (2): 436-45.
Upstream stimulatory factors, USF1 and USF2 are differentially expressed during Xenopus embryonic development. , Fujimi TJ ., Gene Expr Patterns. July 1, 2008; 8 (6): 376-381.
Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1. , Herr P., Development. May 1, 2008; 135 (10): 1813-22.
Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways. , Zhao H ., Development. April 1, 2008; 135 (7): 1283-93.
The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm. , Spagnoli FM ., Development. February 1, 2008; 135 (3): 451-61.
The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border. , Hong CS ., Mol Biol Cell. June 1, 2007; 18 (6): 2192-202.
Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. , Rana AA., PLoS Genet. November 17, 2006; 2 (11): e193.
Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/ Smad1 pathway. , Alexandrova EM., Dev Biol. November 15, 2006; 299 (2): 398-410.
Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles. , Beck CW ., Mech Dev. September 1, 2006; 123 (9): 674-88.
Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning. , Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.
Induction and specification of cranial placodes. , Schlosser G ., Dev Biol. June 15, 2006; 294 (2): 303-51.
Limb regeneration in Xenopus laevis froglet. , Suzuki M , Suzuki M ., ScientificWorldJournal. May 12, 2006; 6 Suppl 1 26-37.