Results 1 - 50 of 74 results
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network. , Wu Y., Elife. January 20, 2022; 11
Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal- ventral pattern in Xenopus laevis embryos. , Orlov EE., Dev Cell. January 10, 2022; 57 (1): 95-111.e12.
Rab7 is required for mesoderm patterning and gastrulation in Xenopus. , Kreis J., Biol Open. July 15, 2021; 10 (7):
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Model systems for regeneration: Xenopus. , Phipps LS., Development. March 19, 2020; 147 (6):
Gli2 is required for the induction and migration of Xenopus laevis neural crest. , Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.
Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells. , Chernoff EAG., Front Cell Neurosci. February 27, 2018; 12 45.
Divergent axial morphogenesis and early shh expression in vertebrate prospective floor plate. , Kremnyov S., Evodevo. January 31, 2018; 9 4.
Mouth development. , Chen J ., Wiley Interdiscip Rev Dev Biol. September 1, 2017; 6 (5):
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis. , Pitcairn E., Commun Integr Biol. May 10, 2017; 10 (3): e1309488.
G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/ β-catenin signaling and are essential for head formation in Xenopus. , Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.
Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. , Thélie A., Development. October 1, 2015; 142 (19): 3416-28.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. October 2, 2014; 9 (10): e110559.
Reagents for developmental regulation of Hedgehog signaling. , Lewis C., Methods. April 1, 2014; 66 (3): 390-7.
Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis. , Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.
The cytoskeletal protein Zyxin inhibits Shh signaling during the CNS patterning in Xenopus laevis through interaction with the transcription factor Gli1. , Martynova NY., Dev Biol. August 1, 2013; 380 (1): 37-48.
Scaling of dorsal- ventral patterning by embryo size-dependent degradation of Spemann''s organizer signals. , Inomata H ., Cell. June 6, 2013; 153 (6): 1296-311.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. , Reis AH., Dev Biol. May 15, 2012; 365 (2): 350-62.
Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. , Scerbo P ., PLoS One. January 1, 2012; 7 (5): e36855.
Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis. , Barnett C., Mech Dev. January 1, 2012; 129 (9-12): 324-38.
Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left- Right Asymmetry. , Pai VP ., Stem Cells Int. January 1, 2012; 2012 353491.
The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. , Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.
Loss of Xenopus tropicalis EMSY causes impairment of gastrulation and upregulation of p53. , Rana AA., N Biotechnol. July 1, 2011; 28 (4): 334-41.
A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling. , Peyrot SM., Dev Biol. April 15, 2011; 352 (2): 254-66.
Jiraiya attenuates BMP signaling by interfering with type II BMP receptors in neuroectodermal patterning. , Aramaki T., Dev Cell. October 19, 2010; 19 (4): 547-61.
B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. , Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.
Complementary expression of HSPG 6-O-endosulfatases and 6-O-sulfotransferase in the hindbrain of Xenopus laevis. , Winterbottom EF., Gene Expr Patterns. March 1, 2009; 9 (3): 166-72.
The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo. , Hou S., Dev Cell. August 1, 2007; 13 (2): 226-41.
Hedgehog signaling regulates the amount of hypaxial muscle development during Xenopus myogenesis. , Martin BL., Dev Biol. April 15, 2007; 304 (2): 722-34.
Xenopus Tetraspanin-1 regulates gastrulation movements and neural differentiation in the early Xenopus embryo. , Yamamoto Y., Differentiation. March 1, 2007; 75 (3): 235-45.
Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/ Smad1 pathway. , Alexandrova EM., Dev Biol. November 15, 2006; 299 (2): 398-410.
FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. , Urban AE ., Dev Biol. September 1, 2006; 297 (1): 103-17.
Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase ( Xdhcr7) in neural development. , Tadjuidje E ., Dev Dyn. August 1, 2006; 235 (8): 2095-110.
Negative regulation of Hedgehog signaling by the cholesterogenic enzyme 7-dehydrocholesterol reductase. , Koide T., Development. June 1, 2006; 133 (12): 2395-405.
Limb regeneration in Xenopus laevis froglet. , Suzuki M , Suzuki M ., ScientificWorldJournal. May 12, 2006; 6 Suppl 1 26-37.
Early, H+-V-ATPase-dependent proton flux is necessary for consistent left- right patterning of non-mammalian vertebrates. , Adams DS ., Development. May 1, 2006; 133 (9): 1657-71.
Sirenomelia in Bmp7 and Tsg compound mutant mice: requirement for Bmp signaling in the development of ventral posterior mesoderm. , Zakin L., Development. May 1, 2005; 132 (10): 2489-99.
Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus. , Chen JA ., Mech Dev. March 1, 2005; 122 (3): 307-31.
Xenopus aristaless-related homeobox ( xARX) gene product functions as both a transcriptional activator and repressor in forebrain development. , Seufert DW ., Dev Dyn. February 1, 2005; 232 (2): 313-24.
Olfactory and lens placode formation is controlled by the hedgehog-interacting protein ( Xhip) in Xenopus. , Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.
Xenopus nodal related-1 is indispensable only for left- right axis determination. , Toyoizumi R., Int J Dev Biol. January 1, 2005; 49 (8): 923-38.
R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. , Kazanskaya O., Dev Cell. October 1, 2004; 7 (4): 525-34.
Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis. , Grimaldi A ., Development. July 1, 2004; 131 (14): 3249-62.
Differential gene expression between the embryonic tail bud and regenerating larval tail in Xenopus laevis. , Sugiura T., Dev Growth Differ. February 1, 2004; 46 (1): 97-105.
Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate. , Andreazzoli M ., Development. November 1, 2003; 130 (21): 5143-54.
A novel function for Hedgehog signalling in retinal pigment epithelium differentiation. , Perron M ., Development. April 1, 2003; 130 (8): 1565-77.
Xenopus neurula left- right asymmetry is respeficied by microinjecting TGF-beta5 protein. , Mogi K., Int J Dev Biol. February 1, 2003; 47 (1): 15-29.