Results 1 - 19 of 19 results
Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. , Bright AR., EMBO J. May 3, 2021; 40 (9): e104913.
Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. , Mukherjee S ., Elife. September 7, 2020; 9
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M., Dev Biol. June 15, 2017; 426 (2): 301-324.
Controlled levels of canonical Wnt signaling are required for neural crest migration. , Maj E., Dev Biol. September 1, 2016; 417 (1): 77-90.
ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia. , Walentek P ., Dev Biol. December 15, 2015; 408 (2): 292-304.
BMP signalling controls the construction of vertebrate mucociliary epithelia. , Cibois M., Development. July 1, 2015; 142 (13): 2352-63.
A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. , Dubaissi E ., Development. April 1, 2014; 141 (7): 1514-25.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
Waif1/5T4 inhibits Wnt/ β-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization. , Kagermeier-Schenk B., Dev Cell. December 13, 2011; 21 (6): 1129-43.
A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling. , Peyrot SM., Dev Biol. April 15, 2011; 352 (2): 254-66.
Appl1 is essential for the survival of Xenopus pancreas, duodenum, and stomach progenitor cells. , Wen L., Dev Dyn. August 1, 2010; 239 (8): 2198-207.
Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis. , Hellsten U., BMC Biol. July 25, 2007; 5 31.
Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue. , Afelik S., Genes Dev. June 1, 2006; 20 (11): 1441-6.
Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development. , Dickinson K., Dev Dyn. February 1, 2006; 235 (2): 368-81.
Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus. , Chen JA ., Mech Dev. March 1, 2005; 122 (3): 307-31.
Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. , Pohl BS., Gene. January 3, 2005; 344 21-32.
Molecular components of the endoderm specification pathway in Xenopus tropicalis. , D'Souza A., Dev Dyn. January 1, 2003; 226 (1): 118-27.
XFKH2, a Xenopus HNF-3 alpha homologue, exhibits both activin-inducible and autonomous phases of expression in early embryos. , Bolce ME., Dev Biol. December 1, 1993; 160 (2): 413-23.
Sequential expression of HNF-3 beta and HNF-3 alpha by embryonic organizing centers: the dorsal lip/node, notochord and floor plate. , Ruiz i Altaba A ., Mech Dev. December 1, 1993; 44 (2-3): 91-108.