Results 1 - 42 of 42 results
Functions of block of proliferation 1 during anterior development in Xenopus laevis. , Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.
Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm. , Tsukano K., Dev Biol. August 1, 2022; 488 81-90.
Function of chromatin modifier Hmgn1 during neural crest and craniofacial development. , Ihewulezi C., Genesis. October 1, 2021; 59 (10): e23447.
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
Mcrs1 interacts with Six1 to influence early craniofacial and otic development. , Neilson KM ., Dev Biol. November 1, 2020; 467 (1-2): 39-50.
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction. , Pegge J., Dev Biol. April 15, 2020; 460 (2): 108-114.
Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos. , Lichtig H., Front Physiol. February 18, 2020; 11 75.
Gli2 is required for the induction and migration of Xenopus laevis neural crest. , Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.
The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/ β-catenin signaling. , Hong CS ., Dev Biol. October 1, 2018; 442 (1): 162-172.
PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation. , Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.
Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a. , Khedgikar V., Elife. August 22, 2017; 6
Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. , Ding Y ., Dev Biol. June 15, 2017; 426 (2): 176-187.
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M., Dev Biol. June 15, 2017; 426 (2): 301-324.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin. , Gouignard N ., Dis Model Mech. June 1, 2016; 9 (6): 607-20.
Elongator Protein 3 (Elp3) stabilizes Snail1 and regulates neural crest migration in Xenopus. , Yang X., Sci Rep. May 18, 2016; 6 26238.
The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling. , Wang C ., J Biol Chem. September 4, 2015; 290 (36): 21925-38.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.
Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis. , Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.
Identification of Pax3 and Zic1 targets in the developing neural crest. , Bae CJ., Dev Biol. February 15, 2014; 386 (2): 473-83.
Two different vestigial like 4 genes are differentially expressed during Xenopus laevis development. , Barrionuevo MG., Int J Dev Biol. January 1, 2014; 58 (5): 369-77.
Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. , Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. , Pieper M., Development. March 1, 2012; 139 (6): 1175-87.
The LIM adaptor protein LMO4 is an essential regulator of neural crest development. , Ochoa SD., Dev Biol. January 15, 2012; 361 (2): 313-25.
Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues. , Munoz WA., PLoS One. January 1, 2012; 7 (4): e34342.
Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway. , Takahashi C ., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.
Kazrin, and its binding partners ARVCF- and delta-catenin, are required for Xenopus laevis craniofacial development. , Cho K., Dev Dyn. December 1, 2011; 240 (12): 2601-12.
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. , Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.
Xenopus reduced folate carrier regulates neural crest development epigenetically. , Li J., PLoS One. January 1, 2011; 6 (11): e27198.
B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. , Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.
Characterisation of the fibroblast growth factor dependent transcriptome in early development. , Branney PA., PLoS One. January 1, 2009; 4 (3): e4951.
A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification. , Bonano M., Dev Biol. November 1, 2008; 323 (1): 114-29.
Hairy2- Id3 interactions play an essential role in Xenopus neural crest progenitor specification. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.
Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways. , Zhao H ., Development. April 1, 2008; 135 (7): 1283-93.
FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development. , Steiner AB., Development. December 1, 2006; 133 (24): 4827-38.
Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. , Vernon AE., Development. September 1, 2006; 133 (17): 3359-70.
Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. , Monsoro-Burq AH ., Dev Cell. February 1, 2005; 8 (2): 167-78.
Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. , Pohl BS., Gene. January 3, 2005; 344 21-32.
Molecular anatomy of placode development in Xenopus laevis. , Schlosser G ., Dev Biol. July 15, 2004; 271 (2): 439-66.
Regulated gene expression of hyaluronan synthases during Xenopus laevis development. , Nardini M., Gene Expr Patterns. May 1, 2004; 4 (3): 303-8.