Results 1 - 50 of 88 results
Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis. , Huang X ., Genes (Basel). November 18, 2020; 11 (11):
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. , Mukherjee S ., Elife. September 7, 2020; 9
An Early Function of Polycystin-2 for Left- Right Organizer Induction in Xenopus. , Vick P ., iScience. April 27, 2018; 2 76-85.
Candidate Heterotaxy Gene FGFR4 Is Essential for Patterning of the Left- Right Organizer in Xenopus. , Sempou E., Front Physiol. February 5, 2018; 9 1705.
RAPGEF5 Regulates Nuclear Translocation of β-Catenin. , Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.
Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish. , Bisgrove BW., Elife. November 15, 2017; 6
Nodal signalling in Xenopus: the role of Xnr5 in left/ right asymmetry and heart development. , Tadjuidje E ., Open Biol. August 1, 2016; 6 (8):
Embryonic transcription is controlled by maternally defined chromatin state. , Hontelez S ., Nat Commun. December 18, 2015; 6 10148.
The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. , Luehders K., Development. October 1, 2015; 142 (19): 3351-61.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT ., Development. December 1, 2014; 141 (23): 4537-47.
The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. , Iwasaki Y ., Development. October 1, 2014; 141 (19): 3740-51.
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. , Ioannou A ., Dev Biol. August 15, 2013; 380 (2): 243-58.
Transcriptional regulation of mesoderm genes by MEF2D during early Xenopus development. , Kolpakova A ., PLoS One. July 18, 2013; 8 (7): e69693.
Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. , Lim CY., Development. February 1, 2013; 140 (4): 853-60.
Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis. , Colas AR., Genes Dev. December 1, 2012; 26 (23): 2567-79.
Self-regulation of the head-inducing properties of the Spemann organizer. , Inui M., Proc Natl Acad Sci U S A. September 18, 2012; 109 (38): 15354-9.
Regulation of early xenopus embryogenesis by Smad ubiquitination regulatory factor 2. , Das S., Dev Dyn. August 1, 2012; 241 (8): 1260-73.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. , Sudou N ., Development. May 1, 2012; 139 (9): 1651-61.
The formation and positioning of cilia in Ciona intestinalis embryos in relation to the generation and evolution of chordate left- right asymmetry. , Thompson H., Dev Biol. April 15, 2012; 364 (2): 214-23.
An essential and highly conserved role for Zic3 in left- right patterning, gastrulation and convergent extension morphogenesis. , Cast AE ., Dev Biol. April 1, 2012; 364 (1): 22-31.
KDEL tagging: a method for generating dominant-negative inhibitors of the secretion of TGF-beta superfamily proteins. , Matsukawa S ., Int J Dev Biol. January 1, 2012; 56 (5): 351-6.
Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e. , Cha SW ., PLoS One. January 1, 2012; 7 (7): e41782.
Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left- Right Asymmetry. , Pai VP ., Stem Cells Int. January 1, 2012; 2012 353491.
Novel functions of Noggin proteins: inhibition of Activin/ Nodal and Wnt signaling. , Bayramov AV., Development. December 1, 2011; 138 (24): 5345-56.
HEB and E2A function as SMAD/FOXH1 cofactors. , Yoon SJ., Genes Dev. August 1, 2011; 25 (15): 1654-61.
Siamois and Twin are redundant and essential in formation of the Spemann organizer. , Bae S., Dev Biol. April 15, 2011; 352 (2): 367-81.
A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. , Rankin SA , Rankin SA ., Dev Biol. March 15, 2011; 351 (2): 297-310.
Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left- right asymmetry in Xenopus. , Marjoram L., Development. February 1, 2011; 138 (3): 475-85.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. , Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.
Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. , Luxardi G ., Development. February 1, 2010; 137 (3): 417-26.
Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis. , Vick P ., Dev Biol. July 15, 2009; 331 (2): 281-91.
Identification of a novel negative regulator of activin/ nodal signaling in mesendodermal formation of Xenopus embryos. , Cheong SM., J Biol Chem. June 19, 2009; 284 (25): 17052-60.
Activin/ nodal signaling modulates XPAPC expression during Xenopus gastrulation. , Lou X., Dev Dyn. March 1, 2008; 237 (3): 683-91.
Calcium fluxes in dorsal forerunner cells antagonize beta-catenin and alter left- right patterning. , Schneider I., Development. January 1, 2008; 135 (1): 75-84.
Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish. , Amack JD., Dev Biol. October 15, 2007; 310 (2): 196-210.
The role of FoxC1 in early Xenopus development. , Cha JY., Dev Dyn. October 1, 2007; 236 (10): 2731-41.
Left-sided embryonic expression of the BCL-6 corepressor, BCOR, is required for vertebrate laterality determination. , Hilton EN ., Hum Mol Genet. July 15, 2007; 16 (14): 1773-82.
TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. , Ogata S ., Genes Dev. July 15, 2007; 21 (14): 1817-31.
The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. , Sander V., EMBO J. June 20, 2007; 26 (12): 2955-65.
FoxI1e activates ectoderm formation and controls cell position in the Xenopus blastula. , Mir A., Development. February 1, 2007; 134 (4): 779-88.
Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-beta ligands. , Batut J., Dev Cell. February 1, 2007; 12 (2): 261-74.
Anteriorward shifting of asymmetric Xnr1 expression and contralateral communication in left- right specification in Xenopus. , Ohi Y., Dev Biol. January 15, 2007; 301 (2): 447-63.
FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development. , Steiner AB., Development. December 1, 2006; 133 (24): 4827-38.
Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. , Rana AA., PLoS Genet. November 17, 2006; 2 (11): e193.
ADMP2 is essential for primitive blood and heart development in Xenopus. , Kumano G ., Dev Biol. November 15, 2006; 299 (2): 411-23.
Subtilisin-like proprotein convertase activity is necessary for left- right axis determination in Xenopus neurula embryos. , Toyoizumi R., Dev Genes Evol. October 1, 2006; 216 (10): 607-22.
FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. , Urban AE ., Dev Biol. September 1, 2006; 297 (1): 103-17.