Results 1 - 50 of 50 results
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. , Ossipova O., Development. September 11, 2020; 147 (17):
Rspo2 antagonizes FGF signaling during vertebrate mesoderm formation and patterning. , Reis AH., Development. May 27, 2020; 147 (10):
Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway. , Ossipova O., Development. January 1, 2020;
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites. , Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.
Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice. , Xiang W., J Cell Mol Med. February 1, 2011; 15 (2): 359-74.
Downstream of FGF during mesoderm formation in Xenopus: the roles of Elk-1 and Egr-1. , Nentwich O., Dev Biol. December 15, 2009; 336 (2): 313-26.
The RNA-binding protein Mex3b has a fine-tuning system for mRNA regulation in early Xenopus development. , Takada H., Development. July 1, 2009; 136 (14): 2413-22.
Temporal and spatial expression of FGF ligands and receptors during Xenopus development. , Lea R., Dev Dyn. June 1, 2009; 238 (6): 1467-79.
Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways. , Zhao H ., Development. April 1, 2008; 135 (7): 1283-93.
Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos. , Nagano T., Development. December 1, 2006; 133 (23): 4643-54.
Xenopus ADAMTS1 negatively modulates FGF signaling independent of its metalloprotease activity. , Suga A., Dev Biol. July 1, 2006; 295 (1): 26-39.
Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system. , Pasini A., PLoS Biol. July 1, 2006; 4 (7): e225.
BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. , Gamer LW., Dev Biol. September 1, 2005; 285 (1): 156-68.
FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation. , Sivak JM., Dev Cell. May 1, 2005; 8 (5): 689-701.
Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. , Yamamoto A., Cell. January 28, 2005; 120 (2): 223-35.
Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos. , Galli A., Development. October 1, 2003; 130 (20): 4919-29.
Isolation and growth factor inducibility of the Xenopus laevis Lmx1b gene. , Haldin CE ., Int J Dev Biol. May 1, 2003; 47 (4): 253-62.
Using Xenopus as a model system for an undergraduate laboratory course in vertebrate development at the University of Bordeaux, France. , Olive M., Int J Dev Biol. January 1, 2003; 47 (2-3): 153-60.
Common and distinct signals specify the distribution of blood and vascular cell lineages in Xenopus laevis embryos. , Iraha F., Dev Growth Differ. October 1, 2002; 44 (5): 395-407.
Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. , Nutt SL., Genes Dev. May 1, 2001; 15 (9): 1152-66.
Phosphatidylinositol-3 kinase acts in parallel to the ERK MAP kinase in the FGF pathway during Xenopus mesoderm induction. , Carballada R., Development. January 1, 2001; 128 (1): 35-44.
Participation of transcription elongation factor XSII-K1 in mesoderm-derived tissue development in Xenopus laevis. , Taira Y., J Biol Chem. October 13, 2000; 275 (41): 32011-5.
Expression pattern of BXR suggests a role for benzoate ligand-mediated signalling in hatching gland function. , Heath LA., Int J Dev Biol. January 1, 2000; 44 (1): 141-4.
FGF is required for posterior neural patterning but not for neural induction. , Holowacz T., Dev Biol. January 15, 1999; 205 (2): 296-308.
SCL specifies hematopoietic mesoderm in Xenopus embryos. , Mead PE ., Development. July 1, 1998; 125 (14): 2611-20.
Xenopus eHAND: a marker for the developing cardiovascular system of the embryo that is regulated by bone morphogenetic proteins. , Sparrow DB ., Mech Dev. February 1, 1998; 71 (1-2): 151-63.
FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. , Christen B ., Dev Biol. December 15, 1997; 192 (2): 455-66.
Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development. , Heller N., Mech Dev. December 1, 1997; 69 (1-2): 83-104.
The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins. , Latinkić BV., Genes Dev. December 1, 1997; 11 (23): 3265-76.
A Xenopus type I activin receptor mediates mesodermal but not neural specification during embryogenesis. , Chang C ., Development. February 1, 1997; 124 (4): 827-37.
Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. , Ladher R., Development. August 1, 1996; 122 (8): 2385-94.
A novel MAP kinase phosphatase is localised in the branchial arch region and tail tip of Xenopus embryos and is inducible by retinoic acid. , Mason C., Mech Dev. April 1, 1996; 55 (2): 133-44.
Early regionalized expression of a novel Xenopus fibroblast growth factor receptor in neuroepithelium. , Riou JF ., Biochem Biophys Res Commun. January 5, 1996; 218 (1): 198-204.
Caudalization of neural fate by tissue recombination and bFGF. , Cox WG., Development. December 1, 1995; 121 (12): 4349-58.
The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development. , Kinoshita N., Cell. November 17, 1995; 83 (4): 621-30.
Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior- posterior neural pattern. , Lamb TM., Development. November 1, 1995; 121 (11): 3627-36.
Developmental and differential regulations in gene expression of Xenopus pleiotrophic factors-alpha and -beta. , Tsujimura A., Biochem Biophys Res Commun. September 14, 1995; 214 (2): 432-9.
Regulation of the Xenopus labial homeodomain genes, HoxA1 and HoxD1: activation by retinoids and peptide growth factors. , Kolm PJ ., Dev Biol. January 1, 1995; 167 (1): 34-49.
Spatial and temporal expression of basic fibroblast growth factor ( FGF-2) mRNA and protein in early Xenopus development. , Song J., Mech Dev. December 1, 1994; 48 (3): 141-51.
Induction of cardiac muscle differentiation in isolated animal pole explants of Xenopus laevis embryos. , Logan M., Development. July 1, 1993; 118 (3): 865-75.
[Regionalization of the expression of tenascin as a response to the inducers of mesoderm]. , Umbhauer M ., C R Seances Soc Biol Fil. January 1, 1993; 187 (3): 341-55.
Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis. , Ruiz i Altaba A ., Development. September 1, 1992; 116 (1): 81-93.
Developmental expression of the Xenopus int-2 ( FGF-3) gene: activation by mesodermal and neural induction. , Tannahill D., Development. July 1, 1992; 115 (3): 695-702.
Xenopus blastulae show regional differences in competence for mesoderm induction: correlation with endogenous basic fibroblast growth factor levels. , Godsave SF., Dev Biol. June 1, 1992; 151 (2): 506-15.
Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification. , Isaacs HV ., Development. March 1, 1992; 114 (3): 711-20.
Specification of the body plan during Xenopus gastrulation: dorsoventral and anteroposterior patterning of the mesoderm. , Slack JM ., Dev Suppl. January 1, 1992; 143-9.
Localized and inducible expression of Xenopus- posterior ( Xpo), a novel gene active in early frog embryos, encoding a protein with a ''CCHC'' finger domain. , Sato SM ., Development. July 1, 1991; 112 (3): 747-53.