Results 1 - 42 of 42 results
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
Systematic mapping of rRNA 2''-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. , Delhermite J ., PLoS Genet. January 18, 2022; 18 (1): e1010012.
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M., Dev Biol. June 15, 2017; 426 (2): 301-324.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.
Hspa9 is required for pronephros specification and formation in Xenopus laevis. , Gassié L., Dev Dyn. December 1, 2015; 244 (12): 1538-49.
Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. , Thélie A., Development. October 1, 2015; 142 (19): 3416-28.
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. , Buisson I ., Dev Biol. January 15, 2015; 397 (2): 175-90.
Heat shock 70-kDa protein 5 ( Hspa5) is essential for pronephros formation by mediating retinoic acid signaling. , Shi W., J Biol Chem. January 2, 2015; 290 (1): 577-89.
The Prdm13 histone methyltransferase encoding gene is a Ptf1a- Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. , Hanotel J., Dev Biol. February 15, 2014; 386 (2): 340-57.
Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein. , Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. , Pieper M., Development. March 1, 2012; 139 (6): 1175-87.
Heat-shock mediated overexpression of HNF1β mutations has differential effects on gene expression in the Xenopus pronephric kidney. , Sauert K., PLoS One. January 1, 2012; 7 (3): e33522.
Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis. , Barnett C., Mech Dev. January 1, 2012; 129 (9-12): 324-38.
Origin and segregation of cranial placodes in Xenopus laevis. , Pieper M., Dev Biol. December 15, 2011; 360 (2): 257-75.
PAPC and the Wnt5a/ Ror2 pathway control the invagination of the otic placode in Xenopus. , Jung B., BMC Dev Biol. June 10, 2011; 11 36.
En2, Pax2/5 and Tcf-4 transcription factors cooperate in patterning the Xenopus brain. , Koenig SF., Dev Biol. April 15, 2010; 340 (2): 318-28.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. , Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.
Zebrafish gbx1 refines the midbrain- hindbrain boundary border and mediates the Wnt8 posteriorization signal. , Rhinn M., Neural Dev. April 2, 2009; 4 12.
Lef1 plays a role in patterning the mesoderm and ectoderm in Xenopus tropicalis. , Roel G., Int J Dev Biol. January 1, 2009; 53 (1): 81-9.
Expression cloning in Xenopus identifies RNA-binding proteins as regulators of embryogenesis and Rbmx as necessary for neural and muscle development. , Dichmann DS ., Dev Dyn. July 1, 2008; 237 (7): 1755-66.
Upstream stimulatory factors, USF1 and USF2 are differentially expressed during Xenopus embryonic development. , Fujimi TJ ., Gene Expr Patterns. July 1, 2008; 8 (6): 376-381.
Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. , Tran U ., Dev Biol. July 1, 2007; 307 (1): 152-64.
FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. , Urban AE ., Dev Biol. September 1, 2006; 297 (1): 103-17.
Induction and specification of cranial placodes. , Schlosser G ., Dev Biol. June 15, 2006; 294 (2): 303-51.
Negative regulation of Hedgehog signaling by the cholesterogenic enzyme 7-dehydrocholesterol reductase. , Koide T., Development. June 1, 2006; 133 (12): 2395-405.
Xenopus aristaless-related homeobox ( xARX) gene product functions as both a transcriptional activator and repressor in forebrain development. , Seufert DW ., Dev Dyn. February 1, 2005; 232 (2): 313-24.
Olfactory and lens placode formation is controlled by the hedgehog-interacting protein ( Xhip) in Xenopus. , Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.
Systematic screening for genes specifically expressed in the anterior neuroectoderm during early Xenopus development. , Takahashi N ., Int J Dev Biol. January 1, 2005; 49 (8): 939-51.
Molecular anatomy of placode development in Xenopus laevis. , Schlosser G ., Dev Biol. July 15, 2004; 271 (2): 439-66.
Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. , Moore KB ., Dev Cell. January 1, 2004; 6 (1): 55-67.
A novel function for Hedgehog signalling in retinal pigment epithelium differentiation. , Perron M ., Development. April 1, 2003; 130 (8): 1565-77.
Pronephric duct extension in amphibian embryos: migration and other mechanisms. , Drawbridge J ., Dev Dyn. January 1, 2003; 226 (1): 1-11.
Xdtx1, a Xenopus Deltex homologue expressed in differentiating neurons and in photoreceptive organs. , Andreazzoli M ., Mech Dev. December 1, 2002; 119 Suppl 1 S247-51.
Conserved expression control and shared activity between cognate T-box genes Tbx2 and Tbx3 in connection with Sonic hedgehog signaling during Xenopus eye development. , Takabatake Y., Dev Growth Differ. August 1, 2002; 44 (4): 257-71.
Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. , Saulnier DM., Dev Biol. August 1, 2002; 248 (1): 13-28.
Identification of NKL, a novel Gli-Kruppel zinc-finger protein that promotes neuronal differentiation. , Lamar E., Development. April 1, 2001; 128 (8): 1335-46.
Expression of the Xvax2 gene demarcates presumptive ventral telencephalon and specific visual structures in Xenopus laevis. , Liu Y ., Mech Dev. January 1, 2001; 100 (1): 115-8.
Expanded retina territory by midbrain transformation upon overexpression of Six6 ( Optx2) in Xenopus embryos. , Bernier G., Mech Dev. May 1, 2000; 93 (1-2): 59-69.
Towards a molecular anatomy of the Xenopus pronephric kidney. , Brändli AW ., Int J Dev Biol. January 1, 1999; 43 (5): 381-95.
Precocious expression of the Wilms'' tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. , Wallingford JB ., Dev Biol. October 1, 1998; 202 (1): 103-12.
Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development. , Heller N., Mech Dev. December 1, 1997; 69 (1-2): 83-104.