Results 1 - 35 of 35 results
Non-acylated Wnts Can Promote Signaling. , Speer KF., Cell Rep. January 22, 2019; 26 (4): 875-883.e5.
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. , Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration. , Owens DA ., Development. January 15, 2017; 144 (2): 292-304.
Controlled levels of canonical Wnt signaling are required for neural crest migration. , Maj E., Dev Biol. September 1, 2016; 417 (1): 77-90.
Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling. , Zhao Y., Dev Biol. March 15, 2016; 411 (2): 257-265.
The PTK7 and ROR2 Protein Receptors Interact in the Vertebrate WNT/Planar Cell Polarity (PCP) Pathway. , Martinez S., J Biol Chem. December 18, 2015; 290 (51): 30562-72.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. , Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.
Microarray-based identification of Pitx3 targets during Xenopus embryogenesis. , Hooker L., Dev Dyn. September 1, 2012; 241 (9): 1487-505.
Sox9 function in craniofacial development and disease. , Lee YH , Lee YH ., Genesis. April 1, 2011; 49 (4): 200-8.
Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning. , Kozmikova I., PLoS One. February 3, 2011; 6 (2): e14650.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction. , Wang Y., J Biol Chem. April 2, 2010; 285 (14): 10890-901.
The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. , Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.
Zebrafish gbx1 refines the midbrain- hindbrain boundary border and mediates the Wnt8 posteriorization signal. , Rhinn M., Neural Dev. April 2, 2009; 4 12.
Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1. , Louie SH., PLoS One. January 1, 2009; 4 (2): e4310.
The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border. , Hong CS ., Mol Biol Cell. June 1, 2007; 18 (6): 2192-202.
The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition. , Cruciat CM., J Biol Chem. May 5, 2006; 281 (18): 12986-93.
R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. , Kazanskaya O., Dev Cell. October 1, 2004; 7 (4): 525-34.
Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. , Saulnier DM., Dev Biol. August 1, 2002; 248 (1): 13-28.
Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. , Zorn AM ., Mol Cell. October 1, 1999; 4 (4): 487-98.
Neural crest induction by Xwnt7B in Xenopus. , Chang C ., Dev Biol. February 1, 1998; 194 (1): 129-34.
Xwnt-2b is a novel axis-inducing Xenopus Wnt, which is expressed in embryonic brain. , Landesman Y., Mech Dev. May 1, 1997; 63 (2): 199-209.
Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. , Leyns L., Cell. March 21, 1997; 88 (6): 747-56.
Analysis of Wnt/Engrailed signaling in Xenopus embryos using biolistics. , Koster JG., Dev Biol. January 10, 1996; 173 (1): 348-52.
Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled. , Sokol SY ., Development. June 1, 1995; 121 (6): 1637-47.
Characterization of a functional promoter for the Xenopus wnt-1 gene on vivo. , Gao X., Oncogene. February 1, 1994; 9 (2): 573-81.
Xwnt-11: a maternally expressed Xenopus wnt gene. , Ku M., Development. December 1, 1993; 119 (4): 1161-73.
Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. , Moon RT ., Development. September 1, 1993; 119 (1): 97-111.
Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene. , von Dassow G., Genes Dev. March 1, 1993; 7 (3): 355-66.
Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos. , Wolda SL., Dev Biol. January 1, 1993; 155 (1): 46-57.
Expression of four zebrafish wnt-related genes during embryogenesis. , Krauss S., Development. September 1, 1992; 116 (1): 249-59.
Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis. , Christian JL ., Development. April 1, 1991; 111 (4): 1045-55.
Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. , McMahon AP., Cell. September 22, 1989; 58 (6): 1075-84.