Results 1 - 50 of 67 results
Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. , Gur M., Front Cell Dev Biol. January 1, 2022; 10 844619.
Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. , Bright AR., EMBO J. May 3, 2021; 40 (9): e104913.
Establishing embryonic territories in the context of Wnt signaling. , Velloso I., Int J Dev Biol. January 1, 2021; 65 (4-5-6): 227-233.
Natural size variation among embryos leads to the corresponding scaling in gene expression. , Leibovich A., Dev Biol. June 15, 2020; 462 (2): 165-179.
Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway. , Ossipova O., Development. January 1, 2020;
Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis. , Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.
Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. , Ding Y ., Proc Natl Acad Sci U S A. September 25, 2018; 115 (39): E9135-E9144.
Roles of Xenopus chemokine ligand CXCLh (XCXCLh) in early embryogenesis. , Goto T ., Dev Growth Differ. May 1, 2018; 60 (4): 226-238.
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. , Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.
Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. , Ding Y ., Dev Biol. June 15, 2017; 426 (2): 176-187.
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/ β-catenin signaling and are essential for head formation in Xenopus. , Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.
Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. , Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT ., Development. December 1, 2014; 141 (23): 4537-47.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. October 2, 2014; 9 (10): e110559.
Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. , Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.
Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. , Lim CY., Development. February 1, 2013; 140 (4): 853-60.
Self-regulation of the head-inducing properties of the Spemann organizer. , Inui M., Proc Natl Acad Sci U S A. September 18, 2012; 109 (38): 15354-9.
A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. , Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.
Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. , Sudou N ., Development. May 1, 2012; 139 (9): 1651-61.
KDEL tagging: a method for generating dominant-negative inhibitors of the secretion of TGF-beta superfamily proteins. , Matsukawa S ., Int J Dev Biol. January 1, 2012; 56 (5): 351-6.
Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e. , Cha SW ., PLoS One. January 1, 2012; 7 (7): e41782.
HEB and E2A function as SMAD/FOXH1 cofactors. , Yoon SJ., Genes Dev. August 1, 2011; 25 (15): 1654-61.
A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. , Rankin SA , Rankin SA ., Dev Biol. March 15, 2011; 351 (2): 297-310.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways. , Zhao H ., Development. April 1, 2008; 135 (7): 1283-93.
Cloning and functional characterization of two key enzymes of glycosphingolipid biosynthesis in the amphibian Xenopus laevis. , Luque ME., Dev Dyn. January 1, 2008; 237 (1): 112-23.
TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. , Ogata S ., Genes Dev. July 15, 2007; 21 (14): 1817-31.
SDF-1 alpha regulates mesendodermal cell migration during frog gastrulation. , Fukui A ., Biochem Biophys Res Commun. March 9, 2007; 354 (2): 472-7.
FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development. , Steiner AB., Development. December 1, 2006; 133 (24): 4827-38.
Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo. , Tashiro S., Dev Growth Differ. October 1, 2006; 48 (8): 499-512.
A Serpin family gene, protease nexin-1 has an activity distinct from protease inhibition in early Xenopus embryos. , Onuma Y ., Mech Dev. June 1, 2006; 123 (6): 463-71.
Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. , Morrison GM., Development. May 1, 2006; 133 (10): 2011-22.
Twisted gastrulation is required for forebrain specification and cooperates with Chordin to inhibit BMP signaling during X. tropicalis gastrulation. , Wills A ., Dev Biol. January 1, 2006; 289 (1): 166-78.
Vg 1 is an essential signaling molecule in Xenopus development. , Birsoy B., Development. January 1, 2006; 133 (1): 15-20.
Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning. , Houston DW ., Development. November 1, 2005; 132 (21): 4845-55.
Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. , Reversade B ., Development. August 1, 2005; 132 (15): 3381-92.
Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. , Dupont S., Cell. April 8, 2005; 121 (1): 87-99.
Exploration of the extracellular space by a large-scale secretion screen in the early Xenopus embryo. , Pera EM ., Int J Dev Biol. January 1, 2005; 49 (7): 781-96.
Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. , Delaune E., Development. January 1, 2005; 132 (2): 299-310.
New roles for FoxH1 in patterning the early embryo. , Kofron M ., Development. October 1, 2004; 131 (20): 5065-78.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.
Selective degradation of excess Ldb1 by Rnf12/ RLIM confers proper Ldb1 expression levels and Xlim-1/ Ldb1 stoichiometry in Xenopus organizer functions. , Hiratani I., Development. September 1, 2003; 130 (17): 4161-75.
Induction of cardiomyocytes by GATA4 in Xenopus ectodermal explants. , Latinkić BV., Development. August 1, 2003; 130 (16): 3865-76.
Regulation of nodal and BMP signaling by tomoregulin-1 ( X7365) through novel mechanisms. , Chang C ., Dev Biol. March 1, 2003; 255 (1): 1-11.
Molecular components of the endoderm specification pathway in Xenopus tropicalis. , D'Souza A., Dev Dyn. January 1, 2003; 226 (1): 118-27.
Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left- right patterning. , Levin M ., Cell. October 4, 2002; 111 (1): 77-89.
The roles of three signaling pathways in the formation and function of the Spemann Organizer. , Xanthos JB., Development. September 1, 2002; 129 (17): 4027-43.
Overexpression of the secreted factor Mig30 expressed in the Spemann organizer impairs morphogenetic movements during Xenopus gastrulation. , Hayata T., Mech Dev. March 1, 2002; 112 (1-2): 37-51.