Results 1 - 50 of 76 results
Functions of block of proliferation 1 during anterior development in Xenopus laevis. , Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.
Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm. , Tsukano K., Dev Biol. August 1, 2022; 488 81-90.
The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. , Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.
Retinoic Acid is Required for Normal Morphogenetic Movements During Gastrulation. , Gur M., Front Cell Dev Biol. January 1, 2022; 10 857230.
The dual-specificity protein kinase Clk3 is essential for Xenopus neural development. , Virgirinia RP., Biochem Biophys Res Commun. August 27, 2021; 567 99-105.
Rab7 is required for mesoderm patterning and gastrulation in Xenopus. , Kreis J., Biol Open. July 15, 2021; 10 (7):
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds. , Kowalczyk I., Development. January 26, 2021; 148 (2):
Interplay of TRIM2 E3 Ubiquitin Ligase and ALIX/ESCRT Complex: Control of Developmental Plasticity During Early Neurogenesis. , Lokapally A., Cells. July 20, 2020; 9 (7):
Dach1 regulates neural crest migration during embryonic development. , Kim YK., Biochem Biophys Res Commun. July 5, 2020; 527 (4): 896-901.
Natural size variation among embryos leads to the corresponding scaling in gene expression. , Leibovich A., Dev Biol. June 15, 2020; 462 (2): 165-179.
Model systems for regeneration: Xenopus. , Phipps LS., Development. March 19, 2020; 147 (6):
The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer. , Chang LS., Elife. January 14, 2020; 9
Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. , Gentsch GE ., Nat Commun. September 19, 2019; 10 (1): 4269.
Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome. , Greenberg RS., Cell. September 5, 2019; 178 (6): 1421-1436.e24.
Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos. , Virgirinia RP., Dev Growth Differ. August 1, 2019; 61 (6): 365-377.
Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. , Kim Y., Epigenetics Chromatin. December 6, 2018; 11 (1): 72.
The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/ β-catenin signaling. , Hong CS ., Dev Biol. October 1, 2018; 442 (1): 162-172.
Tbx2 is required for the suppression of mesendoderm during early Xenopus development. , Teegala S ., Dev Dyn. July 1, 2018; 247 (7): 903-913.
Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes. , Riddiford N., Dev Biol. November 15, 2017; 431 (2): 152-167.
Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2. , Scerbo P ., Elife. June 27, 2017; 6
Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. , Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.
Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. , Thélie A., Development. October 1, 2015; 142 (19): 3416-28.
The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling. , Wang C ., J Biol Chem. September 4, 2015; 290 (36): 21925-38.
Snail2/ Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development. , Tien CL., Development. February 15, 2015; 142 (4): 722-31.
Sox21 regulates the progression of neuronal differentiation in a dose-dependent manner. , Whittington N., Dev Biol. January 15, 2015; 397 (2): 237-47.
Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites. , Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT ., Development. December 1, 2014; 141 (23): 4537-47.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.
PV.1 suppresses the expression of FoxD5b during neural induction in Xenopus embryos. , Yoon J., Mol Cells. March 1, 2014; 37 (3): 220-5.
The Prdm13 histone methyltransferase encoding gene is a Ptf1a- Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. , Hanotel J., Dev Biol. February 15, 2014; 386 (2): 340-57.
NumbL is essential for Xenopus primary neurogenesis. , Nieber F., BMC Dev Biol. October 14, 2013; 13 36.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
On becoming neural: what the embryo can tell us about differentiating neural stem cells. , Moody SA ., Am J Stem Cells. June 30, 2013; 2 (2): 74-94.
The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus. , Bentaya S., Dev Biol. March 15, 2012; 363 (2): 362-72.
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. , Pieper M., Development. March 1, 2012; 139 (6): 1175-87.
The LIM adaptor protein LMO4 is an essential regulator of neural crest development. , Ochoa SD., Dev Biol. January 15, 2012; 361 (2): 313-25.
Loss of Xenopus tropicalis EMSY causes impairment of gastrulation and upregulation of p53. , Rana AA., N Biotechnol. July 1, 2011; 28 (4): 334-41.
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. , Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.
Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. , Lee SY., J Biol Chem. September 17, 2010; 285 (38): 29525-34.
Regulation of vertebrate embryogenesis by the exon junction complex core component Eif4a3. , Haremaki T ., Dev Dyn. July 1, 2010; 239 (7): 1977-87.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. , Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.
Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction. , Wang Y., J Biol Chem. April 2, 2010; 285 (14): 10890-901.
Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells. , Nie S ., Dev Biol. November 1, 2009; 335 (1): 132-42.
Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis. , Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.
Samba, a Xenopus hnRNP expressed in neural and neural crest tissues. , Yan CY., Dev Dyn. January 1, 2009; 238 (1): 204-9.
Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. , Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.
Loss of REEP4 causes paralysis of the Xenopus embryo. , Argasinska J ., Int J Dev Biol. January 1, 2009; 53 (1): 37-43.