Results 1 - 50 of 159 results
Functions of block of proliferation 1 during anterior development in Xenopus laevis. , Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration. , Patel JH., Dev Biol. March 1, 2022; 483 157-168.
Systematic mapping of rRNA 2''-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. , Delhermite J ., PLoS Genet. January 18, 2022; 18 (1): e1010012.
Function of chromatin modifier Hmgn1 during neural crest and craniofacial development. , Ihewulezi C., Genesis. October 1, 2021; 59 (10): e23447.
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
The cytokine FAM3B/PANDER is an FGFR ligand that promotes posterior development in Xenopus. , Zhang F., Proc Natl Acad Sci U S A. May 18, 2021; 118 (20):
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. , Bright AR., EMBO J. May 3, 2021; 40 (9): e104913.
Establishing embryonic territories in the context of Wnt signaling. , Velloso I., Int J Dev Biol. January 1, 2021; 65 (4-5-6): 227-233.
Mcrs1 interacts with Six1 to influence early craniofacial and otic development. , Neilson KM ., Dev Biol. November 1, 2020; 467 (1-2): 39-50.
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. , Vonica A ., Dev Biol. August 1, 2020; 464 (1): 71-87.
Dach1 regulates neural crest migration during embryonic development. , Kim YK., Biochem Biophys Res Commun. July 5, 2020; 527 (4): 896-901.
Natural size variation among embryos leads to the corresponding scaling in gene expression. , Leibovich A., Dev Biol. June 15, 2020; 462 (2): 165-179.
Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction. , Pegge J., Dev Biol. April 15, 2020; 460 (2): 108-114.
Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway. , Solini GE., Dev Biol. April 15, 2020; 460 (2): 99-107.
Model systems for regeneration: Xenopus. , Phipps LS., Development. March 19, 2020; 147 (6):
Role of TrkA signaling during tadpole tail regeneration and early embryonic development in Xenopus laevis. , Iimura A., Genes Cells. February 1, 2020; 25 (2): 86-99.
Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. , Gentsch GE ., Nat Commun. September 19, 2019; 10 (1): 4269.
PTK7 proteolytic fragment proteins function during early Xenopus development. , Lichtig H., Dev Biol. September 1, 2019; 453 (1): 48-55.
Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos. , Virgirinia RP., Dev Growth Differ. August 1, 2019; 61 (6): 365-377.
Calcium Activity Dynamics Correlate with Neuronal Phenotype at a Single Cell Level and in a Threshold-Dependent Manner. , Paudel S., Int J Mol Sci. April 16, 2019; 20 (8):
Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis. , Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.
Gli2 is required for the induction and migration of Xenopus laevis neural crest. , Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.
The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/ β-catenin signaling. , Hong CS ., Dev Biol. October 1, 2018; 442 (1): 162-172.
The Xenopus animal cap transcriptome: building a mucociliary epithelium. , Angerilli A., Nucleic Acids Res. September 28, 2018; 46 (17): 8772-8787.
Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. , Ding Y ., Proc Natl Acad Sci U S A. September 25, 2018; 115 (39): E9135-E9144.
The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis. , Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.
Tbx2 is required for the suppression of mesendoderm during early Xenopus development. , Teegala S ., Dev Dyn. July 1, 2018; 247 (7): 903-913.
NMDA Receptor Signaling Is Important for Neural Tube Formation and for Preventing Antiepileptic Drug-Induced Neural Tube Defects. , Sequerra EB., J Neurosci. May 16, 2018; 38 (20): 4762-4773.
Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes. , Riddiford N., Dev Biol. November 15, 2017; 431 (2): 152-167.
PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation. , Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
Id genes are essential for early heart formation. , Cunningham TJ., Genes Dev. July 1, 2017; 31 (13): 1325-1338.
Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2. , Scerbo P ., Elife. June 27, 2017; 6
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
Developmentally regulated long non-coding RNAs in Xenopus tropicalis. , Forouzmand E., Dev Biol. June 15, 2017; 426 (2): 401-408.
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M., Dev Biol. June 15, 2017; 426 (2): 301-324.
FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step epithelial to mesenchymal transition. , Goto H., Development. April 15, 2017; 144 (8): 1412-1424.
Dual roles of Akirin2 protein during Xenopus neural development. , Liu X., J Biol Chem. April 7, 2017; 292 (14): 5676-5684.
JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis. , Tapia VS ., Regeneration (Oxf). March 14, 2017; 4 (1): 21-35.
EphA7 modulates apical constriction of hindbrain neuroepithelium during neurulation in Xenopus. , Wang X ., Biochem Biophys Res Commun. October 28, 2016; 479 (4): 759-765.
The E3 ubiquitin ligase Hace1 is required for early embryonic development in Xenopus laevis. , Iimura A., BMC Dev Biol. September 21, 2016; 16 (1): 31.
Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome. , Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.
Identification of p62/ SQSTM1 as a component of non-canonical Wnt VANGL2- JNK signalling in breast cancer. , Puvirajesinghe TM., Nat Commun. January 12, 2016; 7 10318.
Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. , Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.
The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling. , Wang C ., J Biol Chem. September 4, 2015; 290 (36): 21925-38.
Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway. , Vitorino M., PLoS One. August 13, 2015; 10 (8): e0135504.