Results 1 - 50 of 73 results
Retinoic Acid is Required for Normal Morphogenetic Movements During Gastrulation. , Gur M., Front Cell Dev Biol. January 1, 2022; 10 857230.
Using a continuum model to decipher the mechanics of embryonic tissue spreading from time-lapse image sequences: An approximate Bayesian computation approach. , Stepien TL., PLoS One. June 19, 2019; 14 (6): e0218021.
Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis. , Mills A ., Front Physiol. February 1, 2019; 10 431.
Roles of Xenopus chemokine ligand CXCLh (XCXCLh) in early embryogenesis. , Goto T ., Dev Growth Differ. May 1, 2018; 60 (4): 226-238.
Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo. , Gouignard N ., PLoS One. January 18, 2018; 13 (1): e0191751.
Roles for Xenopus aquaporin-3b (aqp3.L) during gastrulation: Fibrillar fibronectin and tissue boundary establishment in the dorsal margin. , Forecki J., Dev Biol. January 1, 2018; 433 (1): 3-16.
Cadherins function during the collective cell migration of Xenopus Cranial Neural Crest cells: revisiting the role of E-cadherin. , Cousin H ., Mech Dev. December 1, 2017; 148 79-88.
The ectodomain of cadherin-11 binds to erbB2 and stimulates Akt phosphorylation to promote cranial neural crest cell migration. , Mathavan K., PLoS One. November 30, 2017; 12 (11): e0188963.
PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation. , Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. , Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.
Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a. , Khedgikar V., Elife. August 22, 2017; 6
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
EphA7 modulates apical constriction of hindbrain neuroepithelium during neurulation in Xenopus. , Wang X ., Biochem Biophys Res Commun. October 28, 2016; 479 (4): 759-765.
Controlled levels of canonical Wnt signaling are required for neural crest migration. , Maj E., Dev Biol. September 1, 2016; 417 (1): 77-90.
Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin. , Gouignard N ., Dis Model Mech. June 1, 2016; 9 (6): 607-20.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.
Snail2/ Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development. , Tien CL., Development. February 15, 2015; 142 (4): 722-31.
A distinct mechanism of vascular lumen formation in Xenopus requires EGFL7. , Charpentier MS., PLoS One. February 6, 2015; 10 (2): e0116086.
FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm. , Bjerke MA., Dev Biol. October 15, 2014; 394 (2): 340-56.
Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. , Kirmizitas A., Dev Biol. August 15, 2014; 392 (2): 358-67.
NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling. , Zhang Y ., Dev Biol. August 1, 2014; 392 (1): 15-25.
Migratory and adhesive properties of Xenopus laevis primordial germ cells in vitro. , Dzementsei A., Biol Open. December 15, 2013; 2 (12): 1279-87.
Calpain2 protease: A new member of the Wnt/Ca(2+) pathway modulating convergent extension movements in Xenopus. , Zanardelli S., Dev Biol. December 1, 2013; 384 (1): 83-100.
The human PDZome: a gateway to PSD95-Disc large-zonula occludens (PDZ)-mediated functions. , Belotti E., Mol Cell Proteomics. September 1, 2013; 12 (9): 2587-603.
Developmental regulation of locomotive activity in Xenopus primordial germ cells. , Terayama K., Dev Growth Differ. February 1, 2013; 55 (2): 217-28.
ADAM13 function is required in the 3 dimensional context of the embryo during cranial neural crest cell migration in Xenopus laevis. , Cousin H ., Dev Biol. August 15, 2012; 368 (2): 335-44.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
The cytoplasmic tyrosine kinase Arg regulates gastrulation via control of actin organization. , Bonacci G., Dev Biol. April 1, 2012; 364 (1): 42-55.
Histology of plastic embedded amphibian embryos and larvae. , Kurth T., Genesis. March 1, 2012; 50 (3): 235-50.
PAPC and the Wnt5a/ Ror2 pathway control the invagination of the otic placode in Xenopus. , Jung B., BMC Dev Biol. June 10, 2011; 11 36.
Activity of the RhoU/ Wrch1 GTPase is critical for cranial neural crest cell migration. , Fort P., Dev Biol. February 15, 2011; 350 (2): 451-63.
Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left- right asymmetry in Xenopus. , Marjoram L., Development. February 1, 2011; 138 (3): 475-85.
A novel function for KIF13B in germ cell migration. , Tarbashevich K ., Dev Biol. January 15, 2011; 349 (2): 169-78.
Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. , Luxardi G ., Development. February 1, 2010; 137 (3): 417-26.
Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases. , Gu D., J Cell Sci. November 15, 2009; 122 (Pt 22): 4049-61.
Myosin-X is required for cranial neural crest cell migration in Xenopus laevis. , Hwang YS., Dev Dyn. October 1, 2009; 238 (10): 2522-9.
Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution. , Gray RS ., Dev Dyn. August 1, 2009; 238 (8): 2044-57.
The Wnt antagonists Frzb-1 and Crescent locally regulate basement membrane dissolution in the developing primary mouth. , Dickinson AJ ., Development. April 1, 2009; 136 (7): 1071-81.
The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. , Rozario T., Dev Biol. March 15, 2009; 327 (2): 386-98.
Xenopus ADAM19 is involved in neural, neural crest and muscle development. , Neuner R., Mech Dev. January 1, 2009; 126 (3-4): 240-55.
PACSIN2 regulates cell adhesion during gastrulation in Xenopus laevis. , Cousin H ., Dev Biol. July 1, 2008; 319 (1): 86-99.
TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. , Ogata S ., Genes Dev. July 15, 2007; 21 (14): 1817-31.
PI3K and Erk MAPK mediate ErbB signaling in Xenopus gastrulation. , Nie S ., Mech Dev. January 1, 2007; 124 (9-10): 657-67.
FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. , Urban AE ., Dev Biol. September 1, 2006; 297 (1): 103-17.
Development of the primary mouth in Xenopus laevis. , Dickinson AJ ., Dev Biol. July 15, 2006; 295 (2): 700-13.
Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergent and extension movements in Xenopus embryos. , Muñoz R., Nat Cell Biol. May 1, 2006; 8 (5): 492-500.
Tes regulates neural crest migration and axial elongation in Xenopus. , Dingwell KS., Dev Biol. May 1, 2006; 293 (1): 252-67.
Cloning and expression pattern of the Xenopus erythropoietin receptor. , Yergeau DA., Gene Expr Patterns. April 1, 2006; 6 (4): 420-5.
Xenopus ILK (integrin-linked kinase) is required for morphogenetic movements during gastrulation. , Yasunaga T., Genes Cells. April 1, 2005; 10 (4): 369-79.
The Xenopus embryo as a model system for studies of cell migration. , DeSimone DW ., Methods Mol Biol. January 1, 2005; 294 235-45.