Results 1 - 50 of 58 results
Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants. , Houston DW ., Development. September 1, 2022; 149 (17):
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. , Bright AR., EMBO J. May 3, 2021; 40 (9): e104913.
Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis. , Huang X ., Genes (Basel). November 18, 2020; 11 (11):
Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. , Mukherjee S ., Elife. September 7, 2020; 9
Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis. , Jin L., Stem Cells. September 1, 2018; 36 (9): 1368-1379.
Roles of Xenopus chemokine ligand CXCLh (XCXCLh) in early embryogenesis. , Goto T ., Dev Growth Differ. May 1, 2018; 60 (4): 226-238.
Id genes are essential for early heart formation. , Cunningham TJ., Genes Dev. July 1, 2017; 31 (13): 1325-1338.
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M., Dev Biol. June 15, 2017; 426 (2): 301-324.
Expression pattern of bcar3, a downstream target of Gata2, and its binding partner, bcar1, during Xenopus development. , Green YS., Gene Expr Patterns. January 1, 2016; 20 (1): 55-62.
Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. , Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT ., Development. December 1, 2014; 141 (23): 4537-47.
Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. , Kirmizitas A., Dev Biol. August 15, 2014; 392 (2): 358-67.
IRE1α knockdown rescues tunicamycin-induced developmental defects and apoptosis in Xenopus laevis. , Yuan L., J Biomed Res. July 1, 2014; 28 (4): 275-81.
PPARβ interprets a chromatin signature of pluripotency to promote embryonic differentiation at gastrulation. , Rotman N., PLoS One. December 9, 2013; 8 (12): e83300.
Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. , Lim CY., Development. February 1, 2013; 140 (4): 853-60.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. , Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.
Xenopus Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells. , Lai F ., Development. April 1, 2012; 139 (8): 1476-86.
KDEL tagging: a method for generating dominant-negative inhibitors of the secretion of TGF-beta superfamily proteins. , Matsukawa S ., Int J Dev Biol. January 1, 2012; 56 (5): 351-6.
Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e. , Cha SW ., PLoS One. January 1, 2012; 7 (7): e41782.
The roles of maternal Vangl2 and aPKC in Xenopus oocyte and embryo patterning. , Cha SW ., Development. September 1, 2011; 138 (18): 3989-4000.
Loss of Xenopus tropicalis EMSY causes impairment of gastrulation and upregulation of p53. , Rana AA., N Biotechnol. July 1, 2011; 28 (4): 334-41.
Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. , Luxardi G ., Development. February 1, 2010; 137 (3): 417-26.
Functional dissection of XDppa2/4 structural domains in Xenopus development. , Siegel D ., Mech Dev. December 1, 2009; 126 (11-12): 974-89.
CDK9/cyclin complexes modulate endoderm induction by direct interaction with Mix.3/ mixer. , Zhu H., Dev Dyn. June 1, 2009; 238 (6): 1346-57.
FGF signalling during embryo development regulates cilia length in diverse epithelia. , Neugebauer JM., Nature. April 2, 2009; 458 (7238): 651-4.
XHAPLN3 plays a key role in cardiogenesis by maintaining the hyaluronan matrix around heart anlage. , Ito Y ., Dev Biol. July 1, 2008; 319 (1): 34-45.
IRE1beta is required for mesoderm formation in Xenopus embryos. , Yuan L., Mech Dev. January 1, 2008; 125 (3-4): 207-22.
Regulation of the Xenopus Xsox17alpha(1) promoter by co-operating VegT and Sox17 sites. , Howard L., Dev Biol. October 15, 2007; 310 (2): 402-15.
The role of FoxC1 in early Xenopus development. , Cha JY., Dev Dyn. October 1, 2007; 236 (10): 2731-41.
Xenopus Dab2 is required for embryonic angiogenesis. , Cheong SM., BMC Dev Biol. December 19, 2006; 6 63.
Expression of Sox1 during Xenopus early embryogenesis. , Nitta KR., Biochem Biophys Res Commun. December 8, 2006; 351 (1): 287-93.
Xenopus POU factors of subclass V inhibit activin/ nodal signaling during gastrulation. , Cao Y ., Mech Dev. August 1, 2006; 123 (8): 614-25.
Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. , Morrison GM., Development. May 1, 2006; 133 (10): 2011-22.
The RNA-binding protein, Vg1RBP, is required for pancreatic fate specification. , Spagnoli FM ., Dev Biol. April 15, 2006; 292 (2): 442-56.
Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development. , Dickinson K., Dev Dyn. February 1, 2006; 235 (2): 368-81.
Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning. , Houston DW ., Development. November 1, 2005; 132 (21): 4845-55.
Xenopus ILK (integrin-linked kinase) is required for morphogenetic movements during gastrulation. , Yasunaga T., Genes Cells. April 1, 2005; 10 (4): 369-79.
Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. , Tao Q , Tao Q ., Cell. March 25, 2005; 120 (6): 857-71.
An atlas of differential gene expression during early Xenopus embryogenesis. , Pollet N ., Mech Dev. March 1, 2005; 122 (3): 365-439.
Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. , Delaune E., Development. January 1, 2005; 132 (2): 299-310.
New roles for FoxH1 in patterning the early embryo. , Kofron M ., Development. October 1, 2004; 131 (20): 5065-78.
Induction of cardiomyocytes by GATA4 in Xenopus ectodermal explants. , Latinkić BV., Development. August 1, 2003; 130 (16): 3865-76.
Regulation of nodal and BMP signaling by tomoregulin-1 ( X7365) through novel mechanisms. , Chang C ., Dev Biol. March 1, 2003; 255 (1): 1-11.
Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development. , Clements D., Mech Dev. March 1, 2003; 120 (3): 337-48.
Molecular components of the endoderm specification pathway in Xenopus tropicalis. , D'Souza A., Dev Dyn. January 1, 2003; 226 (1): 118-27.
The latent- TGFbeta-binding-protein-1 (LTBP-1) is expressed in the organizer and regulates nodal and activin signaling. , Altmann CR ., Dev Biol. August 1, 2002; 248 (1): 118-27.
Overexpression of the secreted factor Mig30 expressed in the Spemann organizer impairs morphogenetic movements during Xenopus gastrulation. , Hayata T., Mech Dev. March 1, 2002; 112 (1-2): 37-51.