Results 1 - 50 of 74 results
Functions of block of proliferation 1 during anterior development in Xenopus laevis. , Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.
Systematic mapping of rRNA 2''-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. , Delhermite J ., PLoS Genet. January 18, 2022; 18 (1): e1010012.
Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. , Gur M., Front Cell Dev Biol. January 1, 2022; 10 844619.
The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. , Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.
Function of chromatin modifier Hmgn1 during neural crest and craniofacial development. , Ihewulezi C., Genesis. October 1, 2021; 59 (10): e23447.
A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis. , Pokrovsky D., PLoS Biol. September 7, 2021; 19 (9): e3001377.
Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis. , Huang X ., Genes (Basel). November 18, 2020; 11 (11):
Interplay of TRIM2 E3 Ubiquitin Ligase and ALIX/ESCRT Complex: Control of Developmental Plasticity During Early Neurogenesis. , Lokapally A., Cells. July 20, 2020; 9 (7):
Jmjd6a regulates GSK3β RNA splicing in Xenopus laevis eye development. , Shin JY., PLoS One. July 30, 2019; 14 (7): e0219800.
Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis. , Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.
Using the Xenopus Developmental Eye Regrowth System to Distinguish the Role of Developmental Versus Regenerative Mechanisms. , Kha CX ., Front Physiol. February 1, 2019; 10 502.
Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. , Kim Y., Epigenetics Chromatin. December 6, 2018; 11 (1): 72.
Identification of retinal homeobox ( rax) gene-dependent genes by a microarray approach: The DNA endoglycosylase neil3 is a major downstream component of the rax genetic pathway. , Pan Y., Dev Dyn. November 1, 2018; 247 (11): 1199-1210.
Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis. , Jin L., Stem Cells. September 1, 2018; 36 (9): 1368-1379.
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M., Dev Biol. June 15, 2017; 426 (2): 301-324.
MarvelD3 regulates the c- Jun N-terminal kinase pathway during eye development in Xenopus. , Vacca B., Biol Open. November 15, 2016; 5 (11): 1631-1641.
Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. , Thélie A., Development. October 1, 2015; 142 (19): 3416-28.
The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. , Luehders K., Development. October 1, 2015; 142 (19): 3351-61.
Transcriptional regulator PRDM12 is essential for human pain perception. , Chen YC , Chen YC ., Nat Genet. July 1, 2015; 47 (7): 803-8.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites. , Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character. , Fish MB., Dev Biol. November 15, 2014; 395 (2): 317-330.
An essential role for LPA signalling in telencephalon development. , Geach TJ ., Development. February 1, 2014; 141 (4): 940-9.
Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein. , Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.
The cytoskeletal protein Zyxin inhibits Shh signaling during the CNS patterning in Xenopus laevis through interaction with the transcription factor Gli1. , Martynova NY., Dev Biol. August 1, 2013; 380 (1): 37-48.
Microarray-based identification of Pitx3 targets during Xenopus embryogenesis. , Hooker L., Dev Dyn. September 1, 2012; 241 (9): 1487-505.
Regulation of early xenopus embryogenesis by Smad ubiquitination regulatory factor 2. , Das S., Dev Dyn. August 1, 2012; 241 (8): 1260-73.
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. , Pieper M., Development. March 1, 2012; 139 (6): 1175-87.
Differential role of Axin RGS domain function in Wnt signaling during anteroposterior patterning and maternal axis formation. , Schneider PN., PLoS One. January 1, 2012; 7 (9): e44096.
Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left- Right Asymmetry. , Pai VP ., Stem Cells Int. January 1, 2012; 2012 353491.
Origin and segregation of cranial placodes in Xenopus laevis. , Pieper M., Dev Biol. December 15, 2011; 360 (2): 257-75.
Novel functions of Noggin proteins: inhibition of Activin/ Nodal and Wnt signaling. , Bayramov AV., Development. December 1, 2011; 138 (24): 5345-56.
Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning. , Kozmikova I., PLoS One. February 3, 2011; 6 (2): e14650.
Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. , Lee SY., J Biol Chem. September 17, 2010; 285 (38): 29525-34.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
Dazap2 is required for FGF-mediated posterior neural patterning, independent of Wnt and Cdx function. , Roche DD., Dev Biol. September 1, 2009; 333 (1): 26-36.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. , Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.
Involvement of an inner nuclear membrane protein, Nemp1, in Xenopus neural development through an interaction with the chromatin protein BAF. , Mamada H., Dev Biol. March 15, 2009; 327 (2): 497-507.
The role of Xenopus Rx-L in photoreceptor cell determination. , Wu HY., Dev Biol. March 15, 2009; 327 (2): 352-65.
Loss of REEP4 causes paralysis of the Xenopus embryo. , Argasinska J ., Int J Dev Biol. January 1, 2009; 53 (1): 37-43.
Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. , Kot-Leibovich H., Dis Model Mech. January 1, 2009; 2 (5-6): 295-305.
Extracellular regulation of developmental cell signaling by XtSulf1. , Freeman SD., Dev Biol. August 15, 2008; 320 (2): 436-45.
Expression cloning in Xenopus identifies RNA-binding proteins as regulators of embryogenesis and Rbmx as necessary for neural and muscle development. , Dichmann DS ., Dev Dyn. July 1, 2008; 237 (7): 1755-66.
Pleiotropic effects in Eya3 knockout mice. , Söker T., BMC Dev Biol. June 23, 2008; 8 118.
The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions. , Ermakova GV., Dev Biol. July 15, 2007; 307 (2): 483-97.
Cloning and developmental expression of the Xenopus homeobox gene Xvsx1. , D'Autilia S., Dev Genes Evol. December 1, 2006; 216 (12): 829-34.
Involvement of a Xenopus nuclear GTP-binding protein in optic primordia formation. , Tamanoue Y., Dev Growth Differ. December 1, 2006; 48 (9): 575-85.
Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/ Smad1 pathway. , Alexandrova EM., Dev Biol. November 15, 2006; 299 (2): 398-410.