Results 1 - 50 of 158 results
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
Uncoupling the BMP receptor antagonist function from the WNT agonist function of R-spondin 2 using the inhibitory peptide dendrimer RWd. , Lee H , Lee H ., J Biol Chem. February 1, 2022; 298 (2): 101586.
Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal- ventral pattern in Xenopus laevis embryos. , Orlov EE., Dev Cell. January 10, 2022; 57 (1): 95-111.e12.
Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. , Gur M., Front Cell Dev Biol. January 1, 2022; 10 844619.
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Natural size variation among embryos leads to the corresponding scaling in gene expression. , Leibovich A., Dev Biol. June 15, 2020; 462 (2): 165-179.
The secreted BMP antagonist ERFE is required for the development of a functional circulatory system in Xenopus. , Melchert J., Dev Biol. March 15, 2020; 459 (2): 138-148.
Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. , Ding Y ., Proc Natl Acad Sci U S A. September 25, 2018; 115 (39): E9135-E9144.
Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center. , Castro Colabianchi AM., Development. July 17, 2018; 145 (14):
Tbx2 is required for the suppression of mesendoderm during early Xenopus development. , Teegala S ., Dev Dyn. July 1, 2018; 247 (7): 903-913.
Roles of Xenopus chemokine ligand CXCLh (XCXCLh) in early embryogenesis. , Goto T ., Dev Growth Differ. May 1, 2018; 60 (4): 226-238.
Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2. , Scerbo P ., Elife. June 27, 2017; 6
Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis. , Pitcairn E., Commun Integr Biol. May 10, 2017; 10 (3): e1309488.
The MLL/ Setd1b methyltransferase is required for the Spemann''s organizer gene activation in Xenopus. , Lin H., Mech Dev. November 1, 2016; 142 1-9.
Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome. , Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.
Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling. , Zhao Y., Dev Biol. March 15, 2016; 411 (2): 257-265.
GATA2 regulates Wnt signaling to promote primitive red blood cell fate. , Mimoto MS., Dev Biol. November 1, 2015; 407 (1): 1-11.
The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. , Luehders K., Development. October 1, 2015; 142 (19): 3351-61.
The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling. , Wang C ., J Biol Chem. September 4, 2015; 290 (36): 21925-38.
BMP signalling controls the construction of vertebrate mucociliary epithelia. , Cibois M., Development. July 1, 2015; 142 (13): 2352-63.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.
The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. , Iwasaki Y ., Development. October 1, 2014; 141 (19): 3740-51.
Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. , Kirmizitas A., Dev Biol. August 15, 2014; 392 (2): 358-67.
Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. , Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.
Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos. , Chatfield J., Development. June 1, 2014; 141 (12): 2429-40.
Two different vestigial like 4 genes are differentially expressed during Xenopus laevis development. , Barrionuevo MG., Int J Dev Biol. January 1, 2014; 58 (5): 369-77.
Scaling of dorsal- ventral patterning by embryo size-dependent degradation of Spemann''s organizer signals. , Inomata H ., Cell. June 6, 2013; 153 (6): 1296-311.
Regulation of primitive hematopoiesis by class I histone deacetylases. , Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.
Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. , Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.
Self-regulation of the head-inducing properties of the Spemann organizer. , Inui M., Proc Natl Acad Sci U S A. September 18, 2012; 109 (38): 15354-9.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. , Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.
Eps15R is required for bone morphogenetic protein signalling and differentially compartmentalizes with Smad proteins. , Callery EM ., Open Biol. April 1, 2012; 2 (4): 120060.
Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis. , Barnett C., Mech Dev. January 1, 2012; 129 (9-12): 324-38.
KDEL tagging: a method for generating dominant-negative inhibitors of the secretion of TGF-beta superfamily proteins. , Matsukawa S ., Int J Dev Biol. January 1, 2012; 56 (5): 351-6.
Bmp indicator mice reveal dynamic regulation of transcriptional response. , Javier AL., PLoS One. January 1, 2012; 7 (9): e42566.
Novel functions of Noggin proteins: inhibition of Activin/ Nodal and Wnt signaling. , Bayramov AV., Development. December 1, 2011; 138 (24): 5345-56.
Regulation of early Xenopus development by the PIAS genes. , Burn B., Dev Dyn. September 1, 2011; 240 (9): 2120-6.
Negative feedback in the bone morphogenetic protein 4 ( BMP4) synexpression group governs its dynamic signaling range and canalizes development. , Paulsen M., Proc Natl Acad Sci U S A. June 21, 2011; 108 (25): 10202-7.
Dorsal- ventral patterning: Crescent is a dorsally secreted Frizzled-related protein that competitively inhibits Tolloid proteases. , Ploper D., Dev Biol. April 15, 2011; 352 (2): 317-28.
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. , Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.
Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. , Yan B., Dev Dyn. December 1, 2010; 239 (12): 3467-80.
Jiraiya attenuates BMP signaling by interfering with type II BMP receptors in neuroectodermal patterning. , Aramaki T., Dev Cell. October 19, 2010; 19 (4): 547-61.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. , Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.
Functional dissection of XDppa2/4 structural domains in Xenopus development. , Siegel D ., Mech Dev. December 1, 2009; 126 (11-12): 974-89.