Results 1 - 50 of 57 results
Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. , Ossipova O., Development. September 11, 2020; 147 (17):
Rspo2 antagonizes FGF signaling during vertebrate mesoderm formation and patterning. , Reis AH., Development. May 27, 2020; 147 (10):
Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway. , Ossipova O., Development. January 1, 2020;
Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. , Gentsch GE ., Nat Commun. September 19, 2019; 10 (1): 4269.
Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a. , Khedgikar V., Elife. August 22, 2017; 6
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
Id genes are essential for early heart formation. , Cunningham TJ., Genes Dev. July 1, 2017; 31 (13): 1325-1338.
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
Nodal signalling in Xenopus: the role of Xnr5 in left/ right asymmetry and heart development. , Tadjuidje E ., Open Biol. August 1, 2016; 6 (8):
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT ., Development. December 1, 2014; 141 (23): 4537-47.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.
Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. , Kirmizitas A., Dev Biol. August 15, 2014; 392 (2): 358-67.
Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos. , Chatfield J., Development. June 1, 2014; 141 (12): 2429-40.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. , Lim CY., Development. February 1, 2013; 140 (4): 853-60.
Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis. , Colas AR., Genes Dev. December 1, 2012; 26 (23): 2567-79.
Eps15R is required for bone morphogenetic protein signalling and differentially compartmentalizes with Smad proteins. , Callery EM ., Open Biol. April 1, 2012; 2 (4): 120060.
HEB and E2A function as SMAD/FOXH1 cofactors. , Yoon SJ., Genes Dev. August 1, 2011; 25 (15): 1654-61.
A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. , Rankin SA , Rankin SA ., Dev Biol. March 15, 2011; 351 (2): 297-310.
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. , Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.
The role and regulation of GDF11 in Smad2 activation during tailbud formation in the Xenopus embryo. , Ho DM., Mech Dev. January 1, 2010; 127 (9-12): 485-95.
Identification of a novel negative regulator of activin/ nodal signaling in mesendodermal formation of Xenopus embryos. , Cheong SM., J Biol Chem. June 19, 2009; 284 (25): 17052-60.
Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation. , Cha SW ., Development. November 1, 2008; 135 (22): 3719-29.
Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1. , Herr P., Development. May 1, 2008; 135 (10): 1813-22.
The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm. , Spagnoli FM ., Development. February 1, 2008; 135 (3): 451-61.
Regulation of the Xenopus Xsox17alpha(1) promoter by co-operating VegT and Sox17 sites. , Howard L., Dev Biol. October 15, 2007; 310 (2): 402-15.
The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. , Sander V., EMBO J. June 20, 2007; 26 (12): 2955-65.
The secreted EGF-Discoidin factor xDel1 is essential for dorsal development of the Xenopus embryo. , Arakawa A., Dev Biol. June 1, 2007; 306 (1): 160-9.
Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-beta ligands. , Batut J., Dev Cell. February 1, 2007; 12 (2): 261-74.
Xenopus Dab2 is required for embryonic angiogenesis. , Cheong SM., BMC Dev Biol. December 19, 2006; 6 63.
FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development. , Steiner AB., Development. December 1, 2006; 133 (24): 4827-38.
Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. , Rana AA., PLoS Genet. November 17, 2006; 2 (11): e193.
Inhibitor-resistant type I receptors reveal specific requirements for TGF-beta signaling in vivo. , Ho DM., Dev Biol. July 15, 2006; 295 (2): 730-42.
A novel Cripto-related protein reveals an essential role for EGF-CFCs in Nodal signalling in Xenopus embryos. , Dorey K ., Dev Biol. April 15, 2006; 292 (2): 303-16.
Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development. , Dickinson K., Dev Dyn. February 1, 2006; 235 (2): 368-81.
Vg 1 is an essential signaling molecule in Xenopus development. , Birsoy B., Development. January 1, 2006; 133 (1): 15-20.
BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. , Gamer LW., Dev Biol. September 1, 2005; 285 (1): 156-68.
Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. , Dupont S., Cell. April 8, 2005; 121 (1): 87-99.
The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos. , Callery EM ., Dev Biol. February 15, 2005; 278 (2): 542-59.
New roles for FoxH1 in patterning the early embryo. , Kofron M ., Development. October 1, 2004; 131 (20): 5065-78.
Evidence for antagonism of BMP-4 signals by MAP kinase during Xenopus axis determination and neural specification. , Sater AK ., Differentiation. September 1, 2003; 71 (7): 434-44.
Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. , Cordenonsi M., Cell. May 2, 2003; 113 (3): 301-14.
Xenopus neurula left- right asymmetry is respeficied by microinjecting TGF-beta5 protein. , Mogi K., Int J Dev Biol. February 1, 2003; 47 (1): 15-29.
The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus. , Kumano G ., Mech Dev. October 1, 2002; 118 (1-2): 45-56.
The roles of three signaling pathways in the formation and function of the Spemann Organizer. , Xanthos JB., Development. September 1, 2002; 129 (17): 4027-43.
The role of a Williams-Beuren syndrome-associated helix-loop-helix domain-containing transcription factor in activin/ nodal signaling. , Ring C., Genes Dev. April 1, 2002; 16 (7): 820-35.
Beta-catenin, MAPK and Smad signaling during early Xenopus development. , Schohl A ., Development. January 1, 2002; 129 (1): 37-52.
Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. , Zohn IE., Dev Biol. November 1, 2001; 239 (1): 118-31.