Results 1 - 35 of 35 results
Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants. , Houston DW ., Development. September 1, 2022; 149 (17):
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis. , Kim H ., Dev Cell. April 19, 2021; 56 (8): 1118-1130.e6.
An Early Function of Polycystin-2 for Left- Right Organizer Induction in Xenopus. , Vick P ., iScience. April 27, 2018; 2 76-85.
Candidate Heterotaxy Gene FGFR4 Is Essential for Patterning of the Left- Right Organizer in Xenopus. , Sempou E., Front Physiol. February 5, 2018; 9 1705.
RAPGEF5 Regulates Nuclear Translocation of β-Catenin. , Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.
Mouth development. , Chen J ., Wiley Interdiscip Rev Dev Biol. September 1, 2017; 6 (5):
Id genes are essential for early heart formation. , Cunningham TJ., Genes Dev. July 1, 2017; 31 (13): 1325-1338.
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M., Dev Biol. June 15, 2017; 426 (2): 301-324.
Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis. , Pitcairn E., Commun Integr Biol. May 10, 2017; 10 (3): e1309488.
Roles of the cilium-associated gene CCDC11 in left- right patterning and in laterality disorders in humans. , Gur M., Int J Dev Biol. January 1, 2017; 61 (3-4-5): 267-276.
Formation of a "Pre- mouth Array" from the Extreme Anterior Domain Is Directed by Neural Crest and Wnt/PCP Signaling. , Jacox L., Cell Rep. August 2, 2016; 16 (5): 1445-1455.
Nodal signalling in Xenopus: the role of Xnr5 in left/ right asymmetry and heart development. , Tadjuidje E ., Open Biol. August 1, 2016; 6 (8):
ERK7 regulates ciliogenesis by phosphorylating the actin regulator CapZIP in cooperation with Dishevelled. , Miyatake K., Nat Commun. March 31, 2015; 6 6666.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT ., Development. December 1, 2014; 141 (23): 4537-47.
Developmental expression of Pitx2c in Xenopus trigeminal and profundal placodes. , Jeong YH., Int J Dev Biol. January 1, 2014; 58 (9): 701-4.
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. , Ioannou A ., Dev Biol. August 15, 2013; 380 (2): 243-58.
Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis. , Havis E., Development. June 1, 2012; 139 (11): 1910-20.
Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. , Della Gaspera B ., Dev Dyn. May 1, 2012; 241 (5): 995-1007.
The formation and positioning of cilia in Ciona intestinalis embryos in relation to the generation and evolution of chordate left- right asymmetry. , Thompson H., Dev Biol. April 15, 2012; 364 (2): 214-23.
An essential and highly conserved role for Zic3 in left- right patterning, gastrulation and convergent extension morphogenesis. , Cast AE ., Dev Biol. April 1, 2012; 364 (1): 22-31.
The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus. , Bentaya S., Dev Biol. March 15, 2012; 363 (2): 362-72.
Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left- Right Asymmetry. , Pai VP ., Stem Cells Int. January 1, 2012; 2012 353491.
Retinoic acid regulates anterior- posterior patterning within the lateral plate mesoderm of Xenopus. , Deimling SJ., Mech Dev. October 1, 2009; 126 (10): 913-23.
Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis. , Vick P ., Dev Biol. July 15, 2009; 331 (2): 281-91.
Left-sided embryonic expression of the BCL-6 corepressor, BCOR, is required for vertebrate laterality determination. , Hilton EN ., Hum Mol Genet. July 15, 2007; 16 (14): 1773-82.
Anteriorward shifting of asymmetric Xnr1 expression and contralateral communication in left- right specification in Xenopus. , Ohi Y., Dev Biol. January 15, 2007; 301 (2): 447-63.
Subtilisin-like proprotein convertase activity is necessary for left- right axis determination in Xenopus neurula embryos. , Toyoizumi R., Dev Genes Evol. October 1, 2006; 216 (10): 607-22.
Xenopus nodal related-1 is indispensable only for left- right axis determination. , Toyoizumi R., Int J Dev Biol. January 1, 2005; 49 (8): 923-38.
Xenopus neurula left- right asymmetry is respeficied by microinjecting TGF-beta5 protein. , Mogi K., Int J Dev Biol. February 1, 2003; 47 (1): 15-29.
Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left- right patterning. , Levin M ., Cell. October 4, 2002; 111 (1): 77-89.
Regulation of gut and heart left- right asymmetry by context-dependent interactions between xenopus lefty and BMP4 signaling. , Branford WW ., Dev Biol. July 15, 2000; 223 (2): 291-306.
More than 95% reversal of left- right axis induced by right-sided hypodermic microinjection of activin into Xenopus neurula embryos. , Toyoizumi R., Dev Biol. May 15, 2000; 221 (2): 321-36.
The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in xenopus. , Cheng AM., Development. March 1, 2000; 127 (5): 1049-61.
Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. , Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.