Results 1 - 50 of 67 results
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
Retinoic Acid is Required for Normal Morphogenetic Movements During Gastrulation. , Gur M., Front Cell Dev Biol. January 1, 2022; 10 857230.
Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. , Bright AR., EMBO J. May 3, 2021; 40 (9): e104913.
Establishing embryonic territories in the context of Wnt signaling. , Velloso I., Int J Dev Biol. January 1, 2021; 65 (4-5-6): 227-233.
In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces. , Dur AH., Fluids Barriers CNS. December 11, 2020; 17 (1): 72.
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Natural size variation among embryos leads to the corresponding scaling in gene expression. , Leibovich A., Dev Biol. June 15, 2020; 462 (2): 165-179.
The Lhx1- Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. , Espiritu EB., Sci Rep. October 30, 2018; 8 (1): 16029.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
Hspa9 is required for pronephros specification and formation in Xenopus laevis. , Gassié L., Dev Dyn. December 1, 2015; 244 (12): 1538-49.
Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. , Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.
Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. , Thélie A., Development. October 1, 2015; 142 (19): 3416-28.
TRPP2-dependent Ca2+ signaling in dorso- lateral mesoderm is required for kidney field establishment in Xenopus. , Futel M., J Cell Sci. March 1, 2015; 128 (5): 888-99.
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. , Buisson I ., Dev Biol. January 15, 2015; 397 (2): 175-90.
Heat shock 70-kDa protein 5 ( Hspa5) is essential for pronephros formation by mediating retinoic acid signaling. , Shi W., J Biol Chem. January 2, 2015; 290 (1): 577-89.
Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. , Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.
Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis. , Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.
Regulation of primitive hematopoiesis by class I histone deacetylases. , Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.
Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. , Lim CY., Development. February 1, 2013; 140 (4): 853-60.
Variation in the schedules of somite and neural development in frogs. , Sáenz-Ponce N., Proc Natl Acad Sci U S A. December 11, 2012; 109 (50): 20503-7.
Microarray-based identification of Pitx3 targets during Xenopus embryogenesis. , Hooker L., Dev Dyn. September 1, 2012; 241 (9): 1487-505.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. , Reis AH., Dev Biol. May 15, 2012; 365 (2): 350-62.
Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. , Sudou N ., Development. May 1, 2012; 139 (9): 1651-61.
Non-canonical wnt signals antagonize and canonical wnt signals promote cell proliferation in early kidney development. , McCoy KE., Dev Dyn. June 1, 2011; 240 (6): 1558-66.
A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. , Rankin SA , Rankin SA ., Dev Biol. March 15, 2011; 351 (2): 297-310.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
Notch activates Wnt-4 signalling to control medio- lateral patterning of the pronephros. , Naylor RW., Development. November 1, 2009; 136 (21): 3585-95.
Embryogenesis and laboratory maintenance of the foam-nesting túngara frogs, genus Engystomops (= Physalaemus). , Romero-Carvajal A., Dev Dyn. June 1, 2009; 238 (6): 1444-54.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system. , Strate I., Development. February 1, 2009; 136 (3): 461-72.
A dual requirement for Iroquois genes during Xenopus kidney development. , Alarcón P., Development. October 1, 2008; 135 (19): 3197-207.
Expression cloning in Xenopus identifies RNA-binding proteins as regulators of embryogenesis and Rbmx as necessary for neural and muscle development. , Dichmann DS ., Dev Dyn. July 1, 2008; 237 (7): 1755-66.
Upstream stimulatory factors, USF1 and USF2 are differentially expressed during Xenopus embryonic development. , Fujimi TJ ., Gene Expr Patterns. July 1, 2008; 8 (6): 376-381.
Odd-skipped genes encode repressors that control kidney development. , Tena JJ., Dev Biol. January 15, 2007; 301 (2): 518-31.
Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. , Rana AA., PLoS Genet. November 17, 2006; 2 (11): e193.
ADMP2 is essential for primitive blood and heart development in Xenopus. , Kumano G ., Dev Biol. November 15, 2006; 299 (2): 411-23.
FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. , Urban AE ., Dev Biol. September 1, 2006; 297 (1): 103-17.
The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. , Chen C ., Development. January 1, 2006; 133 (2): 319-29.
An amphioxus LIM-homeobox gene, AmphiLim1/5, expressed early in the invaginating organizer region and later in differentiating cells of the kidney and central nervous system. , Langeland JA., Int J Biol Sci. January 1, 2006; 2 (3): 110-6.
The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos. , Callery EM ., Dev Biol. February 15, 2005; 278 (2): 542-59.
Xenopus aristaless-related homeobox ( xARX) gene product functions as both a transcriptional activator and repressor in forebrain development. , Seufert DW ., Dev Dyn. February 1, 2005; 232 (2): 313-24.
New roles for FoxH1 in patterning the early embryo. , Kofron M ., Development. October 1, 2004; 131 (20): 5065-78.
Selective degradation of excess Ldb1 by Rnf12/ RLIM confers proper Ldb1 expression levels and Xlim-1/ Ldb1 stoichiometry in Xenopus organizer functions. , Hiratani I., Development. September 1, 2003; 130 (17): 4161-75.
Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. , Walmsley M., Development. December 1, 2002; 129 (24): 5683-95.
The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. , Hikasa H., Development. November 1, 2002; 129 (22): 5227-39.
The roles of three signaling pathways in the formation and function of the Spemann Organizer. , Xanthos JB., Development. September 1, 2002; 129 (17): 4027-43.
Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. , Saulnier DM., Dev Biol. August 1, 2002; 248 (1): 13-28.
Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. , Zohn IE., Dev Biol. November 1, 2001; 239 (1): 118-31.
Identification of NKL, a novel Gli-Kruppel zinc-finger protein that promotes neuronal differentiation. , Lamar E., Development. April 1, 2001; 128 (8): 1335-46.