Results 1 - 50 of 76 results
Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants. , Houston DW ., Development. September 1, 2022; 149 (17):
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. , Mukherjee S ., Elife. September 7, 2020; 9
Natural size variation among embryos leads to the corresponding scaling in gene expression. , Leibovich A., Dev Biol. June 15, 2020; 462 (2): 165-179.
PTK7 proteolytic fragment proteins function during early Xenopus development. , Lichtig H., Dev Biol. September 1, 2019; 453 (1): 48-55.
Non-acylated Wnts Can Promote Signaling. , Speer KF., Cell Rep. January 22, 2019; 26 (4): 875-883.e5.
Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. , Ding Y ., Proc Natl Acad Sci U S A. September 25, 2018; 115 (39): E9135-E9144.
Embryonic regeneration by relocalization of the Spemann organizer during twinning in Xenopus. , Moriyama Y ., Proc Natl Acad Sci U S A. May 22, 2018; 115 (21): E4815-E4822.
The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus. , Zhu X., Mech Dev. October 1, 2017; 147 28-36.
Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. , Ding Y ., Dev Biol. June 15, 2017; 426 (2): 176-187.
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
The MLL/ Setd1b methyltransferase is required for the Spemann''s organizer gene activation in Xenopus. , Lin H., Mech Dev. November 1, 2016; 142 1-9.
Embryonic transcription is controlled by maternally defined chromatin state. , Hontelez S ., Nat Commun. December 18, 2015; 6 10148.
NF2/ Merlin is required for the axial pattern formation in the Xenopus laevis embryo. , Zhu X., Mech Dev. November 1, 2015; 138 Pt 3 305-12.
Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway. , Vitorino M., PLoS One. August 13, 2015; 10 (8): e0135504.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT ., Development. December 1, 2014; 141 (23): 4537-47.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. , Iwasaki Y ., Development. October 1, 2014; 141 (19): 3740-51.
Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus. , Colozza G ., Differentiation. July 1, 2014; 88 (1): 17-26.
Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. , Lim CY., Development. February 1, 2013; 140 (4): 853-60.
A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. , Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.
Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. , Sudou N ., Development. May 1, 2012; 139 (9): 1651-61.
Down''s-syndrome-related kinase Dyrk1A modulates the p120-catenin- Kaiso trajectory of the Wnt signaling pathway. , Hong JY., J Cell Sci. February 1, 2012; 125 (Pt 3): 561-9.
Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/ β-catenin signaling pathway. , Fujimi TJ ., Dev Biol. January 15, 2012; 361 (2): 220-31.
Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. , Scerbo P ., PLoS One. January 1, 2012; 7 (5): e36855.
Differential role of Axin RGS domain function in Wnt signaling during anteroposterior patterning and maternal axis formation. , Schneider PN., PLoS One. January 1, 2012; 7 (9): e44096.
The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. , Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.
The roles of maternal Vangl2 and aPKC in Xenopus oocyte and embryo patterning. , Cha SW ., Development. September 1, 2011; 138 (18): 3989-4000.
Siamois and Twin are redundant and essential in formation of the Spemann organizer. , Bae S., Dev Biol. April 15, 2011; 352 (2): 367-81.
A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. , Rankin SA , Rankin SA ., Dev Biol. March 15, 2011; 351 (2): 297-310.
beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. , Blythe SA ., Dev Cell. August 17, 2010; 19 (2): 220-31.
The non-methylated DNA-binding function of Kaiso is not required in early Xenopus laevis development. , Ruzov A., Development. March 1, 2009; 136 (5): 729-38.
Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1. , Louie SH., PLoS One. January 1, 2009; 4 (2): e4310.
Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1. , Herr P., Development. May 1, 2008; 135 (10): 1813-22.
Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways. , Zhao H ., Development. April 1, 2008; 135 (7): 1283-93.
CHD4/ Mi-2beta activity is required for the positioning of the mesoderm/ neuroectoderm boundary in Xenopus. , Linder B., Genes Dev. April 15, 2007; 21 (8): 973-83.
Wnt11/beta-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin. , Kofron M ., Development. February 1, 2007; 134 (3): 503-13.
Jun NH2-terminal kinase ( JNK) prevents nuclear beta-catenin accumulation and regulates axis formation in Xenopus embryos. , Liao G., Proc Natl Acad Sci U S A. October 31, 2006; 103 (44): 16313-8.
Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes. , Standley HJ ., Dev Biol. January 15, 2006; 289 (2): 318-28.
Vg 1 is an essential signaling molecule in Xenopus development. , Birsoy B., Development. January 1, 2006; 133 (1): 15-20.
Novel Daple-like protein positively regulates both the Wnt/beta-catenin pathway and the Wnt/ JNK pathway in Xenopus. , Kobayashi H., Mech Dev. October 1, 2005; 122 (10): 1138-53.
Kaiso/ p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. , Park JI., Dev Cell. June 1, 2005; 8 (6): 843-54.
Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. , Tao Q , Tao Q ., Cell. March 25, 2005; 120 (6): 857-71.
Olfactory and lens placode formation is controlled by the hedgehog-interacting protein ( Xhip) in Xenopus. , Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.
New roles for FoxH1 in patterning the early embryo. , Kofron M ., Development. October 1, 2004; 131 (20): 5065-78.
XSENP1, a novel sumo-specific protease in Xenopus, inhibits normal head formation by down-regulation of Wnt/beta-catenin signalling. , Yukita A., Genes Cells. August 1, 2004; 9 (8): 723-36.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.
Wise, a context-dependent activator and inhibitor of Wnt signalling. , Itasaki N., Development. September 1, 2003; 130 (18): 4295-305.
Flamingo, a cadherin-type receptor involved in the Drosophila planar polarity pathway, can block signaling via the canonical wnt pathway in Xenopus laevis. , Morgan R ., Int J Dev Biol. May 1, 2003; 47 (4): 245-52.