Results 1 - 50 of 53 results
Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm. , Tsukano K., Dev Biol. August 1, 2022; 488 81-90.
A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis. , Pokrovsky D., PLoS Biol. September 7, 2021; 19 (9): e3001377.
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. , Bright AR., EMBO J. May 3, 2021; 40 (9): e104913.
Mcrs1 interacts with Six1 to influence early craniofacial and otic development. , Neilson KM ., Dev Biol. November 1, 2020; 467 (1-2): 39-50.
Natural size variation among embryos leads to the corresponding scaling in gene expression. , Leibovich A., Dev Biol. June 15, 2020; 462 (2): 165-179.
Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction. , Pegge J., Dev Biol. April 15, 2020; 460 (2): 108-114.
Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome. , Greenberg RS., Cell. September 5, 2019; 178 (6): 1421-1436.e24.
The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/ β-catenin signaling. , Hong CS ., Dev Biol. October 1, 2018; 442 (1): 162-172.
Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. , Ding Y ., Proc Natl Acad Sci U S A. September 25, 2018; 115 (39): E9135-E9144.
Ketamine Modulates Zic5 Expression via the Notch Signaling Pathway in Neural Crest Induction. , Shi Y , Shi Y ., Front Mol Neurosci. February 7, 2018; 11 9.
PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation. , Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling. , Wang C ., J Biol Chem. September 4, 2015; 290 (36): 21925-38.
Snail2/ Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development. , Tien CL., Development. February 15, 2015; 142 (4): 722-31.
Xhe2 is a member of the astacin family of metalloproteases that promotes Xenopus hatching. , Hong CS ., Genesis. December 1, 2014; 52 (12): 946-51.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.
Transcription factor AP2 epsilon ( Tfap2e) regulates neural crest specification in Xenopus. , Hong CS ., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.
Identification of Pax3 and Zic1 targets in the developing neural crest. , Bae CJ., Dev Biol. February 15, 2014; 386 (2): 473-83.
Islet-1 immunoreactivity in the developing retina of Xenopus laevis. , Álvarez-Hernán G., ScientificWorldJournal. November 11, 2013; 2013 740420.
Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. , Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. , Pieper M., Development. March 1, 2012; 139 (6): 1175-87.
Xaml1/ Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus. , Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.
Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/ β-catenin signaling pathway. , Fujimi TJ ., Dev Biol. January 15, 2012; 361 (2): 220-31.
The LIM adaptor protein LMO4 is an essential regulator of neural crest development. , Ochoa SD., Dev Biol. January 15, 2012; 361 (2): 313-25.
Siamois and Twin are redundant and essential in formation of the Spemann organizer. , Bae S., Dev Biol. April 15, 2011; 352 (2): 367-81.
Xenopus reduced folate carrier regulates neural crest development epigenetically. , Li J., PLoS One. January 1, 2011; 6 (11): e27198.
B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. , Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.
CHD7 cooperates with PBAF to control multipotent neural crest formation. , Bajpai R ., Nature. February 18, 2010; 463 (7283): 958-62.
The F-box protein Cdc4/ Fbxw7 is a novel regulator of neural crest development in Xenopus laevis. , Almeida AD., Neural Dev. January 4, 2010; 5 1.
Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. , Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.
Hairy2- Id3 interactions play an essential role in Xenopus neural crest progenitor specification. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.
Pleiotropic effects in Eya3 knockout mice. , Söker T., BMC Dev Biol. June 23, 2008; 8 118.
Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways. , Zhao H ., Development. April 1, 2008; 135 (7): 1283-93.
The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border. , Hong CS ., Mol Biol Cell. June 1, 2007; 18 (6): 2192-202.
Emerging roles for zic genes in early development. , Merzdorf CS ., Dev Dyn. April 1, 2007; 236 (4): 922-40.
Xenopus Zic4: Conservation and diversification of expression profiles and protein function among the Xenopus Zic family. , Fujimi TJ ., Dev Dyn. December 1, 2006; 235 (12): spc1.
FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development. , Steiner AB., Development. December 1, 2006; 133 (24): 4827-38.
Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. , Vernon AE., Development. September 1, 2006; 133 (17): 3359-70.
Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase ( Xdhcr7) in neural development. , Tadjuidje E ., Dev Dyn. August 1, 2006; 235 (8): 2095-110.
Identification of a BMP inhibitor-responsive promoter module required for expression of the early neural gene zic1. , Tropepe V ., Dev Biol. January 15, 2006; 289 (2): 517-29.
Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning. , Houston DW ., Development. November 1, 2005; 132 (21): 4845-55.
Systematic screening for genes specifically expressed in the anterior neuroectoderm during early Xenopus development. , Takahashi N ., Int J Dev Biol. January 1, 2005; 49 (8): 939-51.
Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. , Delaune E., Development. January 1, 2005; 132 (2): 299-310.
Specification of the enveloping layer and lack of autoneuralization in zebrafish embryonic explants. , Sagerström CG., Dev Dyn. January 1, 2005; 232 (1): 85-97.
Xdtx1, a Xenopus Deltex homologue expressed in differentiating neurons and in photoreceptive organs. , Andreazzoli M ., Mech Dev. December 1, 2002; 119 Suppl 1 S247-51.
otx2 expression in the ectoderm activates anterior neural determination and is required for Xenopus cement gland formation. , Gammill LS., Dev Biol. December 1, 2001; 240 (1): 223-36.
Expression and function of Xenopus laevis p75( NTR) suggest evolution of developmental regulatory mechanisms. , Hutson LD., J Neurobiol. November 5, 2001; 49 (2): 79-98.
Goosecoid promotes head organizer activity by direct repression of Xwnt8 in Spemann''s organizer. , Yao J., Development. August 1, 2001; 128 (15): 2975-87.