Results 1 - 50 of 64 results
Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. , Gur M., Front Cell Dev Biol. January 1, 2022; 10 844619.
Rab7 is required for mesoderm patterning and gastrulation in Xenopus. , Kreis J., Biol Open. July 15, 2021; 10 (7):
Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. , Bright AR., EMBO J. May 3, 2021; 40 (9): e104913.
Establishing embryonic territories in the context of Wnt signaling. , Velloso I., Int J Dev Biol. January 1, 2021; 65 (4-5-6): 227-233.
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. , Ossipova O., Development. September 11, 2020; 147 (17):
Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. , Mukherjee S ., Elife. September 7, 2020; 9
The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer. , Chang LS., Elife. January 14, 2020; 9
Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway. , Ossipova O., Development. January 1, 2020;
Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis. , Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.
Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. , Ding Y ., Proc Natl Acad Sci U S A. September 25, 2018; 115 (39): E9135-E9144.
Roles of Xenopus chemokine ligand CXCLh (XCXCLh) in early embryogenesis. , Goto T ., Dev Growth Differ. May 1, 2018; 60 (4): 226-238.
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. , Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.
Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. , Ding Y ., Dev Biol. June 15, 2017; 426 (2): 176-187.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling. , Zhao Y., Dev Biol. March 15, 2016; 411 (2): 257-265.
Ventricular cell fate can be specified until the onset of myocardial differentiation. , Caporilli S., Mech Dev. February 1, 2016; 139 31-41.
ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia. , Walentek P ., Dev Biol. December 15, 2015; 408 (2): 292-304.
Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. , Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. , Buisson I ., Dev Biol. January 15, 2015; 397 (2): 175-90.
Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration. , Hayashi S., Dev Biol. December 1, 2014; 396 (1): 31-41.
Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. , Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.
Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis. , Curran KL ., PLoS One. January 1, 2014; 9 (9): e108266.
Self-regulation of the head-inducing properties of the Spemann organizer. , Inui M., Proc Natl Acad Sci U S A. September 18, 2012; 109 (38): 15354-9.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. , Reis AH., Dev Biol. May 15, 2012; 365 (2): 350-62.
Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. , Evans AL., PLoS One. January 1, 2012; 7 (3): e33346.
Waif1/5T4 inhibits Wnt/ β-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization. , Kagermeier-Schenk B., Dev Cell. December 13, 2011; 21 (6): 1129-43.
The forkhead transcription factor FoxB1 regulates the dorsal- ventral and anterior- posterior patterning of the ectoderm during early Xenopus embryogenesis. , Takebayashi-Suzuki K., Dev Biol. December 1, 2011; 360 (1): 11-29.
Novel functions of Noggin proteins: inhibition of Activin/ Nodal and Wnt signaling. , Bayramov AV., Development. December 1, 2011; 138 (24): 5345-56.
Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis. , Ohkawara B., Dev Cell. March 15, 2011; 20 (3): 303-14.
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. , Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
Identification and expression of ventrally associated leucine-zipper (VAL) in Xenopus embryo. , Saito Y., Int J Dev Biol. January 1, 2010; 54 (1): 203-8.
The Wnt antagonists Frzb-1 and Crescent locally regulate basement membrane dissolution in the developing primary mouth. , Dickinson AJ ., Development. April 1, 2009; 136 (7): 1071-81.
Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm. , Hong CS ., Development. December 1, 2008; 135 (23): 3903-10.
Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling. , Li Y., Genes Dev. November 1, 2008; 22 (21): 3050-63.
Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation. , Cha SW ., Development. November 1, 2008; 135 (22): 3719-29.
The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development. , Kazanskaya O., Development. November 1, 2008; 135 (22): 3655-64.
Kremen is required for neural crest induction in Xenopus and promotes LRP6-mediated Wnt signaling. , Hassler C., Development. December 1, 2007; 134 (23): 4255-63.
Wnt/beta-catenin signaling controls Mespo expression to regulate segmentation during Xenopus somitogenesis. , Wang J ., Dev Biol. April 15, 2007; 304 (2): 836-47.
Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo. , Tashiro S., Dev Growth Differ. October 1, 2006; 48 (8): 499-512.
FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. , Urban AE ., Dev Biol. September 1, 2006; 297 (1): 103-17.
Genomic analysis of Xenopus organizer function. , Hufton AL., BMC Dev Biol. June 6, 2006; 6 27.
The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition. , Cruciat CM., J Biol Chem. May 5, 2006; 281 (18): 12986-93.
Role of crescent in convergent extension movements by modulating Wnt signaling in early Xenopus embryogenesis. , Shibata M ., Mech Dev. December 1, 2005; 122 (12): 1322-39.
Xenopus frizzled-4S, a splicing variant of Xfz4 is a context-dependent activator and inhibitor of Wnt/beta-catenin signaling. , Swain RK., Cell Commun Signal. October 19, 2005; 3 12.
The doublesex-related gene, XDmrt4, is required for neurogenesis in the olfactory system. , Huang X ., Proc Natl Acad Sci U S A. August 9, 2005; 102 (32): 11349-54.